A novel dual-labeled nanoparticle for use in labeling and tracking cells in vivo is described. We report the construction and characterization of these gadolinium-rhodamine nanoparticles. These particles are constructed from lipid monomers with diacetylene bonds that are sonicated and photolyzed to form polymerized nanoparticles. Cells are efficiently labeled with these nanoparticles. We have inoculated labeled tumor cells subcutaneouosly into the flanks of C3H mice and have been able to image these labeled tumor cells via MRI and optical imaging. Furthermore, the labeled tumor cells can be visualized via fluorescent microscopy after tissue biopsy. Our results suggest that these nanoparticles could be used to track cells in vivo. This basic platform can be modified with different fluorophores and targeting agents for studying metastisic cell, stem cell, and immune cell trafficking among other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc050085zDOI Listing

Publication Analysis

Top Keywords

labeled tumor
12
tumor cells
12
gadolinium-rhodamine nanoparticles
8
labeling tracking
8
optical imaging
8
cells vivo
8
cells
6
cell
4
nanoparticles cell
4
cell labeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!