Surface patterning with two-dimensional porphyrin supramolecular arrays.

J Am Chem Soc

College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan.

Published: July 2005

Monolayer arrays of a series of meso-tetra-substituted porphyrins containing octadecyloxy and carboxyl (or pyridyl) groups were prepared on the highly oriented pyrolytic graphite surface at the liquid/solid interface. It was found by means of scanning tunneling microscopy that some porphyrins from this family assemble into various patterns. Specifically, slightly undulated rows are obtained from 5,10,15-tris(4-octadecyloxyphenyl)-20-(4-pyridyl)porphyrin. Meanwhile, rows with more pronounced kinks result from 5-(4-carboxyphenyl)-10,15,20-tris(4-octadecyloxyphenyl)porphyrin. The occurrence of the kinks is dependent on the arrangement of surrounding porphyrin molecules and is determined by intricate interplay between directional hydrogen-bonding interactions and packing forces, including molecule-molecule and molecule-substrate interactions. A double-layer structure is obtained from 5,10-bis(4-carboxyphenyl)-15,20-bis(4-octadecyloxyphenyl)porphyrin, probably through cyclic hydrogen bond formation. This work proves the concept that programmed surface patterning is possible by using porphyrins incorporating directional intermolecular interaction sites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0531778DOI Listing

Publication Analysis

Top Keywords

surface patterning
8
patterning two-dimensional
4
two-dimensional porphyrin
4
porphyrin supramolecular
4
supramolecular arrays
4
arrays monolayer
4
monolayer arrays
4
arrays series
4
series meso-tetra-substituted
4
meso-tetra-substituted porphyrins
4

Similar Publications

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.

Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.

View Article and Find Full Text PDF

We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.

View Article and Find Full Text PDF

Assessment of surface treatment methods for strengthening the interfacial adhesion in CARALL fiber metal laminates.

Sci Rep

December 2024

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Metal and polymer interface bonding significantly influences the mechanical performance of fiber metal laminates (FMLs). Therefore, the effect of surface treatments (mechanical abrasion, nitric acid etching, P2 etching, sulfuric acid anodizing (SAA), and electric discharge machine (EDM) texturing) carried on aluminum 2024-T3 alloy sheets was evaluated considering surface morphology, surface topography, and surface roughness. Further, the influence of surface treatments on interfacial adhesion strength and failure mode between the aluminum alloy and carbon fiber prepreg was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!