The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during various stages of valerian (Valeriana officinalis) roots processing by herb farmers and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 15 farms owned by valerian cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the air showed a marked variability and were within a range of 0.95-7,966.6 x 10(3) cfu/m (3). Though median was relatively low (10.75 x 10(3) cfu/m (3)), on 4 farms the concentrations exceeded the level of 10(5) cfu/m (3) and on 1 farm the level of 10(6) cfu/m (3). During the processing of valerian roots, distinct changes could be observed in the composition of airborne microflora. In the first stages of processing, the freshly dug and washed roots until shaking in the drying room, the most numerous were Gram-negative bacteria of the family Pseudomonadaceae (mostly Stenotrophomonas maltophilia, Pseudomonas chlororaphis and Pseudomonas fluorescens). After drying, the dominant organisms were thermo-resistant endospore-forming bacilli (Bacillus spp.) and fungi, among which prevailed Aspergillus fumigatus. Altogether, 29 species or genera of bacteria and 19 species or genera of fungi were identified in the farm air during valerian processing, of these, 10 and 12 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust and endotoxin on the examined farms were very large and ranged from 10.0-776.7 mg/m (3), and from 0.15-24,448.2 microg/m (3), respectively (medians 198.3 mg/m (3) and 40.48 microg/m (3)). In conclusion, farmers cultivating valerian could be exposed during processing of valerian roots to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work-related respiratory disease.
Download full-text PDF |
Source |
---|
Environ Res
December 2024
University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada. Electronic address:
Introduction: Throughout the perinatal period children are exposed to complex mixtures, including indoor chemicals such as phthalates, and biological agents. However, few studies focus on interactions between early-life co-exposures to shed light on how co-exposures modify their individual effects. Therefore, our study aims to assess whether early-life exposure to pets and related biological agents, namely pet allergens and endotoxin, modifies the association between di-(2-ethylhexyl) phthalate (DEHP) and asthma and wheeze in preschoolers to gain insight into interactions.
View Article and Find Full Text PDFEnviron Int
December 2024
Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan.
Asian sand dust (ASD), a significant desert sand dust, contains sub-2.5 µm fine particles and adversely affects human health, particularly exacerbating respiratory diseases. Despite this, the intricate physiological responses triggered by inhaled ASD particles remain incompletely understood.
View Article and Find Full Text PDFJ Occup Environ Hyg
December 2024
Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada.
Awareness about laying hen welfare has led to the phase-out of conventional battery cages in favor of the adoption of alternative housing systems for egg production in many countries. However, the greater freedom of movement for animals and the presence of manure and litter (sawdust, straw, feathers, etc.) on the floor in some alternative housing systems may be suitable conditions for dusts, bacteria, and fungi to be aerosolized, raising concerns about indoor air quality and respiratory health of workers.
View Article and Find Full Text PDFFront Immunol
October 2024
Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States.
Background: Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 () was one of the most upregulated genes following LPS (vs.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
Background: Chicoric acid (CA) is a crucial immunologically active compound found in chicory and echinacea, possessing a range of biological activities. Ferroptosis, a type of iron-dependent cell death induced by lipid peroxidation, plays a key role in the development and advancement of asthma. Targeting ferroptosis could be a potential therapeutic strategy for treating asthma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!