Purpose: To evaluate techniques for anatomical and physiological imaging of the intracranial optic nerve (ON), optic chiasm (OC), and optic tract (OT) at 3T with the aim of visualizing axonal damage in multiple sclerosis (MS).

Materials And Methods: Imaging was performed on a 3T scanner employing a custom-designed head coil that consisted of a coil array with four coils (30 x 30 cm(2)). Oblique fast spin echo (FSE) images, magnetization transfer (MT)-enhanced 3D gradient-echo (GRE) time-of-flight (TOF) images, and line scan diffusion images (LSDI) were obtained. Full diffusion tensor (DT) analysis was performed, and apparent diffusion coefficient (ADC), fractional anisotropy (FA), and fiber direction maps were obtained.

Results: FSE anatomic images were obtained with an in-plane resolution of 0.39 x 0.52 mm(2). The in-plane resolution of the MT and LSDI images was 0.78 x 0.78 mm(2). The OC, intracranial ON, and OT can be seen on these images. The dominant fiber orientations in the OC, ON, and OT, as derived from the DT images, are displayed.

Conclusion: This study shows that by using 3T and a custom-designed, four-channel head coil, it is possible to acquire high-resolution anatomical and physiological images of the OC, ON, and OT. The pilot results presented here pave the way for imaging the anterior visual pathway in patients with MS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.20370DOI Listing

Publication Analysis

Top Keywords

diffusion tensor
8
magnetization transfer
8
optic chiasm
8
anatomical physiological
8
head coil
8
images
8
in-plane resolution
8
high-resolution anatomic
4
diffusion
4
anatomic diffusion
4

Similar Publications

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects.

View Article and Find Full Text PDF

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

Background/objectives: Intraneural tumors (INTs) pose a diagnostic challenge, owing to their varied origins within nerve fascicles and their wide spectrum, which includes both benign and malignant forms. Accurate diagnosis and management of these tumors depends upon the skills of the radiologist in identifying key imaging features and correlating them with the patient's clinical symptoms and examination findings.

Methods: This comprehensive review systematically analyzes the various imaging features in the diagnosis of intraneural tumors, ranging from basic MR to advanced MR imaging techniques such as MR neurography (MRN), diffusion tensor imaging (DTI), and dynamic contrast-enhanced (DCE) MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!