A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calpain-10: from genome search to function. | LitMetric

Calpain-10: from genome search to function.

Diabetes Metab Res Rev

Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London Queen Mary's School of Medicine and Dentistry, University of London, London, E1 2AT United Kingdom.

Published: January 2006

Calpain-10 (CAPN10) is the first diabetes gene to be identified through a genome scan. Many investigators, but not all, have subsequently found associations between CAPN10 polymorphism and type 2 diabetes (T2D) as well as insulin action, insulin secretion, aspects of adipocyte biology and microvascular function. However, this has not always been with the same single nucleotide polymorphism (SNP) or haplotype or the same phenotype, suggesting that there might be more than one disease-associated CAPN10 variant and that these might vary between ethnic groups and the phenotype under study. Our understanding of calpain-10 physiological action has also been greatly augmented by our knowledge of the calpain family domain structure and function, and the relationship between calpain-10 and other calpains is discussed here. Both genetic and functional data indicates that calpain-10 has an important role in insulin resistance and intermediate phenotypes, including those associated with the adipocyte. In this regard, emerging evidence would suggest that calpain-10 facilitates GLUT4 translocation and acts in reorganization of the cytoskeleton. Calpain-10 is also an important molecule in the beta-cell. It is likely to be a determinant of fuel sensing and insulin exocytosis, with actions at the mitochondria and plasma membrane respectively. We postulate that the multiple actions of calpain-10 may relate to its different protein isoforms. In conclusion, the discovery of calpain-10 by a genetic approach has identified it as a molecule of importance to insulin signaling and secretion that may have relevance to the future development of novel therapeutic targets for the treatment of T2D.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dmrr.578DOI Listing

Publication Analysis

Top Keywords

calpain-10
9
insulin
5
calpain-10 genome
4
genome search
4
search function
4
function calpain-10
4
calpain-10 capn10
4
capn10 diabetes
4
diabetes gene
4
gene identified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!