Golgins are a family of coiled-coil proteins that are associated with the Golgi apparatus. They are necessary for tethering events in membrane fusion and may act as structural support for Golgi cisternae. Here we report on the identification of an Arabidopsis golgin which is a homologue of CASP, a known transmembrane mammalian and yeast golgin. Similar to its homologues, the plant CASP contains a long N-terminal coiled-coil region protruding into the cytosol and a C-terminal transmembrane domain with amino acid residues which are highly conserved across species. Through fluorescent protein tagging experiments, we show that plant CASP localizes at the plant Golgi apparatus and that the C-terminus of this protein is sufficient for its localization, as has been shown for its mammalian counterpart. In addition, we demonstrate that the plant CASP is able to localize at the mammalian Golgi apparatus. However, mutagenesis of a conserved tyrosine in the transmembrane domain revealed that it is necessary for ER export and Golgi localization of the Arabidopsis CASP in mammalian cells, but is not required for its correct localization in plant cells. These data suggest that mammalian and plant cells have different mechanisms for concentrating CASP in the Golgi apparatus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-005-4618-4DOI Listing

Publication Analysis

Top Keywords

golgi apparatus
16
plant casp
12
transmembrane domain
8
plant cells
8
plant
7
golgi
7
casp
6
mammalian
5
identification characterization
4
characterization atcasp
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, Shanghai, China.

Background: Pathological tau plays critical roles in many neurodegenerative diseases (NDD), including Alzheimer's disease (AD). However, the mechanisms underlying the initial tau pathogenesis are largely unknown. Extensive tau pathology has been observed in the brains with chronic traumatic encephalopathy (CTE), suggesting repeated traumatic brain injury (rTBI) correlates with tau pathogenesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.

Background: Synaptic plasticity impairment plays a critical role in the pathogenesis of Alzheimer's disease (AD), Smad4, a central intracellular signal transmission mediator of transmission of transforming growth factor-β (TGF-β) signaling, plays a pivotal role in many biological processes, including cell differentiation, migration, apoptosis and tumorigenesis. Emerging evidence has demonstrated that Smad4 is also involved in the pathogenesis of AD. Once TGF-β signaling is stimulated, Smad4 interaction with Sp1 and Smad3 induces the transcriptional activation of APP.

View Article and Find Full Text PDF

Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosylation significantly influences the pharmacological properties of biologics, leading to variability in their glycan structures and posing challenges for consistent therapeutic development.
  • The study uses omics technologies, specifically RNA-sequencing, to predict optimal cell lines for producing specific glycosylation profiles in monoclonal antibodies (mAbs), identifying Alg5 and UDP-Gal transporter levels as key predictive markers.
  • While transcriptomic data is useful in forecasting glycosylation trends, it fails to capture important factors like enzyme localization and cellular dynamics that are crucial for the actual outcomes of glycosylation.
View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!