A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interconversion pharmacokinetics of simvastatin and its hydroxy acid in dogs: effects of gemfibrozil. | LitMetric

Interconversion pharmacokinetics of simvastatin and its hydroxy acid in dogs: effects of gemfibrozil.

Pharm Res

Department of Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.

Published: July 2005

AI Article Synopsis

  • The study focuses on understanding the pharmacokinetics of simvastatin (SV) and its active form simvastatin acid (SVA), particularly how they interact with the drug gemfibrozil in dogs.
  • Results show that, in dogs treated with gemfibrozil, the metabolism and clearance of SV and SVA were significantly reduced, implying gemfibrozil affects the pharmacokinetic behavior of these drugs.
  • The research also highlights that the conversion process between SV and SVA occurs much faster going from SV to SVA, and gemfibrozil's impact on enzyme activity can lead to altered drug interactions.

Article Abstract

Purpose: To characterize the pharmacokinetics of simvastatin (SV) and simvastatin acid (SVA), a lactone-acid pair known to undergo reversible metabolism, and to better understand mechanisms underlying pharmacokinetic interactions observed between SV and gemfibrozil.

Methods: Pharmacokinetic studies were conducted after intravenous administration of SV and SVA to dogs pretreated with a vehicle or gemfibrozil. In vitro metabolism of SVA in dog hepatocytes as well as in vitro hepatic and plasma conversion of SV/SVA were investigated in the absence and presence of gemfibrozil.

Results: In control animals, the irreversible elimination clearances of SV (CL10) and SVA (CL20) were 10.5 and 18.6 ml min(-1) kg(-1), respectively. The formation clearance of SVA from SV (CL12 = 4.8 ml min(-1) kg(-1)) was 8-fold greater than that of SV from SVA (CL21 = 0.6 ml min(-1) kg(-1)), and the recycled fraction was relatively minor (0.009). In gemfibrozil-treated animals, CL10 was essentially unchanged, whereas CL12, CL20, CL21, and recycled fraction were significantly decreased to 2.9, 9, 0.14 ml min(-1) kg(-1), and 0.003, respectively. In control dogs, values for real volume of distribution at steady state (Vss,real) of SV (2.3 L kg(-1)) were much larger than the corresponding values of SVA (0.3 L kg(-1)). Gemfibrozil treatment did not affect Vss,real of either SV or SVA. In dog hepatocytes, gemfibrozil modestly affected the formation of CYP3A-mediated oxidative metabolites (IC50 > 200 microM) and beta-oxidative products (IC5) approximately 100 microM), but markedly inhibited the glucuronidation-mediated lactonization of SVA and the glucuronidation of an SVA beta-oxidation product (IC50 = 18 microM). In in vitro dog and human liver S9 and plasma, hydrolysis of SV to SVA was much faster than that of SVA to SV. Gemfibrozil (250 microM) had a minimal inhibitory effect on the hydrolysis of either SV to SVA or SVA to SV in dog and human liver S9, but had a significant ( approximately 60%) inhibitory effect on the SV to SVA hydrolysis in both dog and human plasma.

Conclusions: In dogs, the interconversion process favored the formation of SVA and was less efficient than the irreversible elimination processes of SV and SVA. Treatment with gemfibrozil did not affect the distribution of SV/SVA, but rather affected the elimination of SVA and the SV/SVA interconversion processes. Gemfibrozil decreased CL20 and CL21 likely via its inhibitory effect on the glucuronidation of SVA, and not on the CYP3A-mediated oxidative metabolism of SV or SVA, the beta-oxidation of SVA, nor the SVA to SV hydrolysis. The decrease in CL12 might be due in part to the inhibitory effect of gemfibrozil on SV to SVA hydrolysis in plasma. Similar rationales may also be applicable to studies in humans and/or other statin lactone-acid pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-005-6037-2DOI Listing

Publication Analysis

Top Keywords

sva
23
min-1 kg-1
16
sva dog
12
dog human
12
sva hydrolysis
12
pharmacokinetics simvastatin
8
gemfibrozil
8
metabolism sva
8
dog hepatocytes
8
irreversible elimination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!