A Norway spruce (Picea abies) tissue culture line that produces extracellular lignin into the culture medium has been used as a model system to study the enzymes involved in lignin polymerization. We report here the purification of two highly basic culture medium peroxidases, PAPX4 and PAPX5, and isolation of the corresponding cDNAs. Both isoforms had high affinity to monolignols with apparent K(m) values in microM range. PAPX4 favoured coniferyl alcohol with a six-fold higher catalytic efficiency (V(max)/K(m)) and PAPX5 p-coumaryl alcohol with a two-fold higher catalytic efficiency as compared to the other monolignol. Thus coniferyl and p-coumaryl alcohol could be preferentially oxidized by different peroxidase isoforms in this suspension culture, which may reflect a control mechanism for the incorporation of different monolignols into the cell wall. Dehydrogenation polymers produced by the isoforms were structurally similar. All differed from the released suspension culture lignin and milled wood lignin, in accordance with previous observations on the major effects that e.g. cell wall context, rate of monolignol feeding and other proteins have on polymerisation. Amino acid residues shown to be involved in monolignol binding in the lignification-related Arabidopsis ATPA2 peroxidase were nearly identical in PAPX4 and PAPX5. This similarity extended to other peroxidases involved in lignification, suggesting that a preferential structural organization of the substrate access channel for monolignol oxidation might exist in both angiosperms and gymnosperms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-005-5345-6DOI Listing

Publication Analysis

Top Keywords

suspension culture
12
coniferyl alcohol
8
picea abies
8
culture medium
8
papx4 papx5
8
higher catalytic
8
catalytic efficiency
8
p-coumaryl alcohol
8
cell wall
8
culture
6

Similar Publications

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.

View Article and Find Full Text PDF

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!