Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation.

Oncogene

Department of Molecular Radiobiology, Division of Genome Biology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan.

Published: November 2005

Aurora-B, previously known as AIM-1, is a conserved eukaryotic mitotic protein kinase. In mammals, this kinase plays an essential role in chromosomal segregation processes, including chromosome condensation, alignment, control of spindle checkpoints, chromosome segregation, and cytokinesis. Aurora-B is overexpressed in various cancer cells, suggesting that the kinase activity perturbs chromosomal segregation processes. Its forced overexpression induces chromosomal number instability and progressive tumorigenicity in rodent cells in vitro and in vivo. Nevertheless, based on focus formation in BALB/c 3T3 A31-1-1 cells, Aurora-B is not oncogenic. Here, we show that Aurora-B kinase activity augments Ras-mediated cell transformation. RNA interference with short hairpin RNA inhibits transformation by Ras and its upstream oncogene Src, but not by the downstream oncogene Raf. In addition, the inner centromere protein, which is a passenger protein associated with Aurora-B, has a similar ability to potentiate the activity of oncogenic Ras. These data indicate that elevated Aurora-B activity promotes transformation by oncogenic Ras by enhancing oncogenic signaling and by converting chromosome number-stable cells to aneuploid cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208884DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
ras-mediated cell
8
cell transformation
8
chromosomal segregation
8
segregation processes
8
oncogenic ras
8
aurora-b
6
activity
5
cells
5
aurora-b/aim-1 kinase
4

Similar Publications

IP6K1 rewires LKB1 signaling to mediate hyperglycemic endothelial senescence.

Diabetes

January 2025

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

[Treatment of severe flares in Crohn's disease and ulcerative colitis].

Inn Med (Heidelb)

January 2025

Abteilung für interventionelle gastroenterologische Endoskopie, Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, Essen, Deutschland.

Background: In chronic inflammatory bowel diseases (IBD), severe flares are characterized by intense inflammatory activity and a high disease burden for patients. Treatment addresses both short-term goals (e.g.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!