The purpose of this study was to test whether the melanocortin-4 receptor (MC4R) is critical in the development of hypertension associated with obesity and its metabolic disorders. MC4R-deficient homozygous (-/-) and heterozygous (+/-) and wild-type (WT) C57BL/6J mice 17 to 19 weeks old (n=5 to 7 per group) were implanted with telemetry devices for monitoring 24-hour mean arterial pressure (MAP) and heart rate (HR). After 3-day stable control measurements on normal-salt diet (NSD; 0.4% NaCl), mice received a high-salt diet (HSD; 4% NaCl) for 7 days, followed by 3-day recovery on NSD. MC4R (-/-) mice were severely obese compared with MC4R (+/-) and WT mice (body weight 48+/-1.5 versus 31+/-0.6 and 30+/-0.5 g respectively). On NSD, MAP was similar in all groups of mice (MC4R (-/-) 110+/-3 mm Hg; MC4R (+/-) 109+/-2 mm Hg; WT 114+/-2 mm Hg), and HR in MC4R (-/-) was lower than in WT (604+/-5 versus 645+/-9 bpm; P<0.05) but not different from MC4R (+/-) (625+/-13 bpm) mice. HSD did not significantly alter MAP or HR in any of the groups. Epididymal and retroperitoneal fat weights and plasma leptin levels were several-fold greater in MC4R (-/-) compared with MC4R (+/-) and WT mice. Plasma insulin and glucose levels were also significantly greater in MC4R (-/-) than in MC4R (+/-) and WT mice. These data suggest that despite obesity, visceral adiposity, hyperleptinemia, and hyperinsulinemia, MC4R (-/-) mice are neither hypertensive nor salt sensitive, indicating that a functional MC4R may be necessary for the development of hypertension associated with obesity and its metabolic abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000175474.99326.bfDOI Listing

Publication Analysis

Top Keywords

mc4r -/-
12
mc4r +/-
8
mice
6
mc4r
6
melanocortin-4 receptor-deficient
4
receptor-deficient mice
4
mice hypertensive
4
hypertensive salt-sensitive
4
salt-sensitive despite
4
despite obesity
4

Similar Publications

Defining Hyperphagia for Improved Diagnosis and Management of MC4R Pathway-Associated Disease: A Roundtable Summary.

Curr Obes Rep

January 2025

Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Purpose Of Review: Hyperphagia is a condition associated with rare obesity-related diseases, presenting as a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors. In October 2023, a group of researchers and clinicians with expert knowledge on hyperphagia convened at the annual ObesityWeek meeting to discuss the need for a unified definition of hyperphagia and key items necessary to improve the identification, assessment, and treatment of hyperphagia in patients with melanocortin 4 receptor (MC4R) pathway-associated diseases.

Recent Findings: The definition of hyperphagia proposed by this group is a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease without an approved pharmacological approach for its prevention/treatment. Based on the modified Delphi process, NAFLD was redefined as metabolic dysfunction-associated steatotic liver disease (MASLD) to highlight the metabolic aspect of liver pathogenesis. Chios mastiha ( var.

View Article and Find Full Text PDF

Pharmacogenetic Testing in Treatment-resistant Panic Disorder: a Preliminary Analysis.

Clin Pract Epidemiol Ment Health

December 2024

Laboratory of Panic and Respiration, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ). Rio de Janeiro, RJ, Brazil.

Background: Many pharmacological treatments are considered effective in the treatment of panic disorder (PD), however, about 20 to 40% of the patients have treatment-resistant PD. Pharmacogenetics could explain why some patients are treatment-resistant.

Objective: Our objective was to gather preliminary data on the clinical usefulness of pharmacogenetic testing in this disorder.

View Article and Find Full Text PDF

Background: The growth in obesity and rates of abdominal obesity in developing countries is due to the dietary transition, meaning a shift from traditional, fiber-rich diets to Westernized diets high in processed foods, sugars, and unhealthy fats. Environmental changes, such as improving the quality of dietary fat consumed, may be useful in preventing or mitigating the obesity or unhealthy obesity phenotype in individuals with a genetic predisposition, although this has not yet been confirmed. Therefore, in this study, we investigated how dietary fat quality indices with metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the Karelis criterion interact with genetic susceptibility in Iranian female adults.

View Article and Find Full Text PDF

N-Branched Tricyclic Guanidines as Novel Melanocortin-3 Receptor Agonists and Melanocortin-4 Receptor Antagonists.

J Med Chem

January 2025

Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

The melanocortin receptors are a class of centrally and peripherally expressed G protein-coupled receptors, of which the MC3R and MC4R subtypes are implicated in the regulation of appetite and energy homeostasis and can serve as potential therapeutic targets for disorders such as obesity and cachexia. An unbiased high-throughput mixture-based library screen was implemented to identify novel ligands with an emphasis on the identification of nanomolar-potent agonists of the mouse melanocortin-3 receptor. This screen yielded the discovery of an N-branched tricyclic guanidine scaffold (TPI2408) that contained three nanomolar potent mMC3R agonists and additional compounds that possessed antagonism for the mMC4R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!