To clarify stress-induced immunological reactions and molecular events during exercise and the potential relevance to exercise-induced bronchoconstriction, transcriptional responses to standardized physical stress were determined. Six healthy, young volunteers underwent an endurance exercise of 90% of their individual anaerobic threshold for 90 min. Time-dependent alterations in the expression pattern of leukocytes from healthy, trained subjects were analyzed by DNA microarrays before and 2 h and 6 h after exercise. Starting out from a large collection of cDNA library clones comprising more than 70,000 human expressed sequence tags, we selected, designed, and immobilized oligonucleotide probes (60-70mers) for transcripts of 5000 stress- and inflammation-relevant genes. Exercise-induced stress provoked changes in the expression of 433 gene activities 2 h and/or 6 h after exercise, which could be grouped into six clusters. The most prominent feature was an enhanced transcription of two genes, coding for 5-lipoxygenase (ALOX5) and ALOX5-activating protein. Moreover, enhanced levels of leukotriene B4 (LTB4) and LTC4 (P<0.05) were detected in plasma after exercise. Our data demonstrate that exercise alters the activities of a distinct number of genes. In particular, they possibly provide novel insights into the molecular mechanisms of exercise-induced bronchoconstriction and suggest that enhanced transcription of ALOX5 and its activating protein together with a present predisposition of the subject critically contribute to exercise-induced asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-3063fjeDOI Listing

Publication Analysis

Top Keywords

transcription response
4
response physical
4
physical stress--clues
4
stress--clues molecular
4
molecular mechanisms
4
mechanisms exercise-induced
4
exercise-induced asthma
4
asthma clarify
4
clarify stress-induced
4
stress-induced immunological
4

Similar Publications

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.

View Article and Find Full Text PDF

Ferroptosis is linked to various pathological conditions; however, the specific targets and mechanisms through which traditional Chinese medicine influences ischemic stroke (IS)-induced ferroptosis remain poorly understood. In this study, data from the Gene Expression Omnibus and disease target databases (OMIM, GeneCards, DisGeNet, TTD, and DrugBank) were integrated with ferroptosis-related gene datasets. To identify key molecular targets of Chuanxiong Rhizoma (CX), drug ingredient databases, including PubChem and TCMBank, were employed to map CX-related targets (CX-DEGs-FRG and CX-IS-FRG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!