In a previous study, we reported that alpha-hydroxy acids (AHA), such as glycolic acid and lactic acid, did not induce any significant changes in transepidermal water loss for normal murine skin. The ultrastructural observations, however, showed that the extent of lamellar body exocytosis significantly increased. Because AHA can theoretically decrease the calcium ion concentration by chelation, topical AHA may induce the loss of epidermal calcium gradient by lowering the calcium ion concentration in the granulocytes and, subsequently, induce lamellar body secretion. The aim of this study is to verify that glycolic acid could modulate the epidermal calcium gradient and increase lamellar body exocytosis. Seventy per cent of glycolic acid aqueous solution was applied to the normal skin of hairless mice and biochemical and morphological studies were performed. The loss of epidermal calcium gradient was observed in glycolic-acid-applied skin of hairless mice and subsequent barrier function recovery processes, such as an increase in lamellar body secretion, were observed. The extracellular glycolic acid was found to inhibit the change in intracellular calcium ion concentration in response to extracellular calcium ion concentration changes in the cultured mouse keratinocyte in vitro. The protein and mRNA expressions of tumour necrosis factor-alpha and interleukin-1alpha in the murine epidermis were significantly increased after glycolic acid application. An in vitro study using cultured keratinocytes suggested that glycolic acid could lower the calcium ion concentration, at least in part, through the chelating effects of the glycolic acid on the cationic ions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0906-6705.2005.00308.xDOI Listing

Publication Analysis

Top Keywords

glycolic acid
32
calcium ion
20
ion concentration
20
epidermal calcium
16
calcium gradient
16
lamellar body
16
calcium
9
acid
9
glycolic
8
murine epidermis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!