An inhibitor of the stretch-activated cation receptor exerts a potent effect on chondrocyte phenotype.

Differentiation

Cartilage Molecular Genetics Group, Cartilage Biology and Orthopaedics Branch, Department of Health and Human Services, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Published: June 2005

Rat chondrosarcoma (RCS) cells are unusual in that they display a stable chondrocyte phenotype in monolayer culture. This phenotype is reflected by a rounded cellular morphology with few actin-containing stress fibers and production of an extracellular matrix rich in sulfated proteoglycans, with high-level expression of aggrecan, COMP, Sox9, and collagens type II, IX, and XI. Additionally, these cells do not express collagen type I. Here it is shown that in the absence of any mechanical stimulation, treatment of RCS cells with gadolinium chloride (Gd3+), a stretch-activated cation channel blocker, caused the cells to undergo de-differentiation, adopting a flattened fibroblast phenotype with the marked appearance of actin stress fibers and vinculin-containing focal contacts. This change was accompanied by a dramatic reduction in the expression of aggrecan, Sox9, collagen types II, IX, and XI, with a corresponding increase in the expression of collagen type I and fibronectin. These effects were found to be reversible by simple removal of Gd3+ from the medium. Gd3+ also had a similar effect on expression of chondrocyte marker genes in freshly isolated human chondrocytes. These data suggest that mechanoreceptor signaling plays a key role in maintenance of the chondrocyte phenotype, even in the absence of mechanical stimulation. Further, treatment of RCS cells with Gd3+ provides a tractable system for assessing the molecular events underlying the reversible differentiation of chondrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-0436.2005.00024.xDOI Listing

Publication Analysis

Top Keywords

chondrocyte phenotype
12
rcs cells
12
stretch-activated cation
8
stress fibers
8
expression aggrecan
8
collagen type
8
absence mechanical
8
mechanical stimulation
8
stimulation treatment
8
treatment rcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!