HIV vaccines: brief review and discussion of future directions.

Expert Rev Vaccines

Department of Infectious Diseases, St. Jude Children's Research Hospital, MS 320 332 N. Lauderdale, Memphis, TN 38105, USA.

Published: June 2005

A major barrier to the design of a successful HIV vaccine is virus diversity,which is particularly apparent in the envelope glycoprotein, the target of neutralizing antibodies. An antibody generated to one envelope glycoprotein may not recognize an isolate bearing a different envelope glycoprotein. Thus, single-envelope glycoprotein vaccines have protected against homologous but not necessarily against heterologous challenge. Antigenic diversity has been addressed in the design of vaccines for other pathogens by the preparation of polyvalent vaccines. The poliovirus vaccine, for example, comprises three serotypes of poliovirus, a feature that was essential in providing full protection against polio infection. Similarly, the authors propose that overcoming HIV diversity is likely to require the administration of a cocktail of envelope glycoprotein antigens. Delivery of such an array of envelope glycoproteins will elicit a broad immune response that is potentially capable of recognizing the diverse population of HIV-1 isolates. This article reviews data relevant to the development of cocktail vaccines which have been designed to elicit a wide range of envelope glycoprotein-specific B- and T-cell responses.

Download full-text PDF

Source
http://dx.doi.org/10.1586/14760584.4.3.305DOI Listing

Publication Analysis

Top Keywords

envelope glycoprotein
16
envelope
6
glycoprotein
5
hiv vaccines
4
vaccines review
4
review discussion
4
discussion future
4
future directions
4
directions major
4
major barrier
4

Similar Publications

The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).

View Article and Find Full Text PDF

Safety, bactericidal activity, and pharmacokinetics of the antituberculosis drug candidate BTZ-043 in South Africa (PanACEA-BTZ-043-02): an open-label, dose-expansion, randomised, controlled, phase 1b/2a trial.

Lancet Microbe

December 2024

Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:

Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.

Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.

View Article and Find Full Text PDF

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.

View Article and Find Full Text PDF

Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor.

Viruses

November 2024

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!