Boron neutron capture therapy (BNCT) is an adjuvant therapy that has the potential to control local tumor growth. A selective delivery of sufficient amounts of boron to individual tumor cells, compared to surrounding normal tissues, is the key for successful BNCT. We have designed and synthesized a new highly water-soluble boronated porphyrin, TABP-1, as a possible BNCT agent. When we injected the maximum tolerated dose (MTD: 15 mg/kg) of TABP-1 systemically into the tail vein of athymic rats bearing intracerebral (i.c.) human glioblastoma U-87 MG xenografts, the compound accumulated preferentially in brain tumors compared to normal brain; however, the level of boron in the tumors was less than the 30 microg/g of tissue that is generally considered necessary for BNCT. We next investigated whether convection-enhanced delivery (CED) could improve the boron distribution. The compound was administered directly into i.c. tumors using an osmotic minipump attached to a brain-infusion cannula. TABP-1 doses from 0.25 to 1.0 mg infused locally over 24 h produced tumor boron concentrations greater than those obtained by systemic administration at the MTD. For example, CED administration of 0.5 mg of TABP-1 produced a tumor boron level of 65.4 microg/g of tumor, whereas the serum level was only 0.41 microg/g (tumor to serum ratio of approximately 160:1). CED also produced relatively high tumor to normal brain ratios of approximately 5:1 for ipsilateral brain and approximately 26:1 for contralateral brain tissues at the 0.5 mg dose. Thus, we may be able to achieve therapeutic BNCT efficacy with minimal systemic toxicity or radiation-induced damage to normal tissue by administering TABP-1 using CED.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp049933iDOI Listing

Publication Analysis

Top Keywords

boronated porphyrin
8
porphyrin tabp-1
8
intracerebral human
8
human glioblastoma
8
normal brain
8
produced tumor
8
tumor boron
8
microg/g tumor
8
tumor serum
8
tumor
7

Similar Publications

Article Synopsis
  • The study focuses on synthesizing two new compounds called pentafluorophenyl-N-confused porphyrins (PFNCPs), one with acetylacetonate and the other with ylidene-2-propanone, through a simple one-pot reaction without a catalyst.
  • The research demonstrates that the acetylacetonate-substituted PFNCP undergoes chemical changes under mild acidic conditions, producing a new derivative when chelated with boron, while the other compound shows a unique electrocyclic reaction resulting in a tricyclic product.
  • Characterization of these compounds was achieved using various techniques, including X-ray crystallography and spectroscopy, with additional theoretical studies conducted
View Article and Find Full Text PDF
Article Synopsis
  • * This nanoreactor integrates various components, including modified hyaluronic acid and guanosine, to generate reactive oxygen species (ROS) and increase hydrogen peroxide levels which damage cancer cells.
  • * As a result, the nanoreactor effectively reduces cell survival by causing nuclear and mitochondrial damage while also depleting protective cellular components, leading to a strong anticancer effect in both lab experiments and living organisms.
View Article and Find Full Text PDF

Aluminium porphyrins catalyse the hydrogenation of CO with H.

Chem Sci

December 2024

Department of Inorganic Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Praha 2 Czech Republic

Boron-based frustrated Lewis pairs (FLPs) have become well-established catalysts for the hydrogenation of a wide range of functional groups. Conversely, aluminium-based FLP hydrogenation catalysts are less common, especially for CO reduction. They are mostly confined to the hydrogenation of imines, alkenes, and alkynes even though aluminium is much more abundant than boron and forms structurally related compounds.

View Article and Find Full Text PDF

On the Nature of the Out-of-Plane Distortions in Subporphyrins.

Chemphyschem

November 2024

Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kerala, India.

The field of subporphyrins has garnered great interest in recent years owing to its unique structure and associated properties. They exhibit spectroscopic features similar to porphyrins and find applications in various optoelectronic devices, photodynamic therapy etc. Most of the synthesized subporphyrins have boron coordination with an axial ligand and exhibits a bowl-shaped geometry.

View Article and Find Full Text PDF

C-C Coupling in sterically demanding porphyrin environments.

Beilstein J Org Chem

November 2024

School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, D02 R590, Ireland.

Unlike their planar counterparts, classic synthetic protocols for C-C bond forming reactions on nonplanar porphyrins are underdeveloped. The development of C-C bond forming reactions on nonplanar porphyrins is critical in advancing this field of study for more complex porphyrin architectures, which could be used in supramolecular assemblies, catalysis, or sensing. In this work a library of arm-extended dodecasubstituted porphyrins was synthesized through the optimization of the classic Suzuki-Miyaura coupling of peripheral haloaryl substituents with a range of boronic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!