Formulation, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres.

Drug Deliv

University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.

Published: August 2006

Ketorolac tromethamine has to be given every 6 hr intramuscularly in patients for acute pain, so to avoid frequent dosing and patient inconvenience we found it to be a suitable candidate for parenteral controlled delivery by biodegradable microspheres for the present study. Ketorolac tromethamine-loaded microspheres were prepared by o/w emulsion solvent evaporation technique using different polymers: polycaprolactone, poly lactic-co-glycolic acid (PLGA 65/35), and poly lactic-co-glycolic acid (PLGA 85/15). To tailor the release profile of drug for several days, blends of PLGA 65/35 and PLGA 85/15 were prepared with polycaprolactone (PCL) in different ratios. The results revealed that microspheres made with 1:3 (PLGA65/35:PCL) blend released 97% of the drug in 5 days as compared 97% in 30 days in with pure PLGA65/35 microspheres. Microspheres made with 1:1 (PLGA65/35:PCL) and 3:1 (PLGA65/35:PCL released 98% of the drug in 30 days. In microspheres made with 1:3 (PLGA85/15:PCL), almost the entire drug was released in a week whereas in batches made with pure PLGA85/15 and 3:1 (PLGA 85/15:PCL) more than 80% of the drug was released in 60 days as compared with 96% in 60 days in 1:1 (PLGA85/15:PCL). Higher encapsulation efficiency was obtained with microspheres made with pure PLGA 65/35. These formulations were characterized for particle size analysis by Malvern mastersizer that revealed particle size in range of 12-15 micron and 12-22 micron for microspheres made with polymer blends of PLGA 65/35:PCL and PLGA85/15:PCL, respectively. In pure PLGA65/35 and PLGA85/15, particle size was 28 micron and 8 micron, respectively. Surface topography was studied by scanning electron microscopy that revealed a spherical shape of microspheres. From our study it as concluded that with careful selection of different polymers and their combinations, we can tailor the release of ketorolac tromethamine for long periods.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10717540590925726DOI Listing

Publication Analysis

Top Keywords

plga 65/35
12
drug days
12
particle size
12
microspheres
10
ketorolac tromethamine-loaded
8
biodegradable microspheres
8
ketorolac tromethamine
8
microspheres study
8
poly lactic-co-glycolic
8
lactic-co-glycolic acid
8

Similar Publications

A Newly Validated HPLC-DAD Method for the Determination of Ricinoleic Acid (RA) in PLGA Nanocapsules.

Pharmaceuticals (Basel)

September 2024

Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil.

The assessment of ricinoleic acid (RA) incorporated into polymeric nanoparticles is a challenge that has not yet been explored. This bioactive compound, the main component of castor oil, has attracted attention in the pharmaceutical field for its valuable anti-inflammatory, antifungal, and antimicrobial properties. This work aims to develop a new and simple analytical method using high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the identification and quantification of ricinoleic acid, with potential applicability in several other complex systems.

View Article and Find Full Text PDF

The aim of our research was the development of prolonged delivery systems for therapeutic agents with various properties (prevention and treatment of bone diseases, anti-neoplastic, anti-inflammatory, antioxidant) that would ensure sustained therapeutic levels of the active principle, above the minimum inhibitory concentration, without reaching toxic levels over a long period of time as alternatives to conventional routes of administration. PLGA (poly lactic-co-glycolic acid), a biodegradable and biocompatible synthetic polymer, FDA approved, with a 65:35 lactic acid (LA): glycolic acid (GA) copolymer ratio, was chosen as delivery system. Our studies have shown that in PBS it undergoes two simultaneous degradation processes, hydrolysis and autohydrolysis, degrading completely in about 40 days.

View Article and Find Full Text PDF

Infliximab microencapsulation: an innovative approach for intra-articular administration of biologics in the management of rheumatoid arthritis-in vitro evaluation.

Drug Deliv Transl Res

December 2023

Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, 27002, Lugo, Spain.

Microencapsulation of the therapeutical monoclonal antibody infliximab (INF) was investigated as an innovative approach to improve its stability and to achieve formulations with convenient features for intra-articular administration. Ultrasonic atomization (UA), a novel alternative to microencapsulate labile drugs, was compared with the conventional emulsion/evaporation method (Em/Ev) using biodegradable polymers, specifically Polyactive 1000PEOT70PBT30 [poly(ethylene-oxide-terephthalate)/poly(butylene-terephthalate); PEOT-PBT] and its polymeric blends with poly-(D, L-lactide-co-glycolide) (PLGA) RG502 and RG503 (PEOT-PBT:PLGA; 65:35). Six different formulations of spherical core-shell microcapsules were successfully developed and characterized.

View Article and Find Full Text PDF

Tissue-engineering technologies have the potential to provide an effective approach to bone regeneration. Based on the published literature and data from our laboratory, two biomaterial inks containing PLGA and blended with graphene nanoparticles were fabricated. The biomaterial inks consisted of two forms of commercially available PLGA with varying ratios of LA:GA (65:35 and 75:25) and molecular weights of 30,000-107,000.

View Article and Find Full Text PDF

The aim of the study was to design injectable long-acting poly (lactide-co-glycolide) (PLGA)-based in situ gel implants (ISGI) loaded with the anti-diabetic alogliptin. Providing sustained therapeutic exposures and improving the pharmacological responses of alogliptin were targeted for achieving reduced dosing frequency and enhanced treatment outputs. In the preliminary study, physicochemical characteristics of different solvents utilized in ISGI preparation were studied to select a proper solvent possessing satisfactory solubilization capacity, viscosity, water miscibility, and affinity to PLGA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!