Genetic control of cell wall invertases in developing endosperm of maize.

Planta

U. S. Department of Agriculture, Agricultural Research Service, CMAVE, Gainesville, FL 32611-0680, USA.

Published: January 2006

AI Article Synopsis

  • The total invertase activity in maize seeds is primarily attributed to two genes, Incw1 and Incw2, with mutations in the Mn1 locus leading to significantly reduced seed weight but not death.
  • The mn1 mutant shows about 1% residual CWI activity, primarily due to the Incw1 gene, despite the major loss of function from Incw2.
  • RNA expression analyses reveal distinct patterns for Incw1 and Incw2 during seed development, indicating potential post-transcriptional regulation and suggesting that INCW2 is crucial for managing sugar utilization in the endosperm.

Article Abstract

We show here that the total invertase activity in developing seeds of maize is due to two cell wall invertase (CWI) genes, Incw1 and Incw2 (Mn1). Our previous results have shown that loss-of-function mutations at the Mn1 locus lead to the miniature-1 (mn1) seed phenotype, marked by a loss of >70% of seed weight at maturity. The mn1 seed mutant is, however, non-lethal presumably because it retains a residual low level, approximately 1%, of the total CWI activity relative to the Mn1 endosperm throughout seed development. Evidence here shows that the residual activity in the mn1 mutant is encoded by the Incw1 gene. RNA level analyses, especially quantitative real-time PCR studies, showed significant spatial and temporal heterogeneity in the expression of the two CWI genes in the developing endosperm. The Mn1-encoded Incw2 transcripts were seen at the highest levels in the basal region (the sugar unloading zone) during the early phase of cell division and elongation in the endosperm. In contrast, the highest levels of Incw1 transcripts were seen in the storage phase in both the upper (storage cells) and the lower parts of the endosperm. Protein and enzyme level analyses, however, appeared to show a lack of concordance with the RNA level of expression in both the Mn1 and mn1 endosperms, indicating a possibility of post-transcriptional control in the expression of these two genes. Collectively, the data suggest an important role for apoplastic cleavage of sucrose throughout the duration of seed development; and, of the two isoforms, the INCW2 appears to control metabolic flux of sugar utilization in the developing endosperm.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-005-0039-5DOI Listing

Publication Analysis

Top Keywords

developing endosperm
12
cell wall
8
cwi genes
8
mn1
8
mn1 seed
8
seed development
8
rna level
8
level analyses
8
highest levels
8
endosperm
6

Similar Publications

Proteome changes during the germination and early seedling development of carnauba palm (Copernicia prunifera) under skotomorphogenic conditions.

J Proteomics

January 2025

Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Ceará, Fortaleza, Brazil. Electronic address:

We analyze the proteome changes during the development of the carnauba palm (Copernicia prunifera) seedlings under skotomorphogenic conditions, by separating the embryo into its two components: haustorium (HA) and cotyledonary petiole (CP) and established the descriptive and quantitative proteomes of these tissues across four developmental stages. 5205 proteins were identified in HA and 6028 in CP. These proteomes are rich in proteins known to maintain the skotomorphogenic state, and in a complete set of proteins involved in cellular respiration and biosynthesis of secondary metabolites.

View Article and Find Full Text PDF

Targeting a cysteine proteinase inhibitor and a defensin-like protein in Litchi chinensis seed development leveraging endosperm single-nucleus transcriptome.

Int J Biol Macromol

January 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China. Electronic address:

Seed development is one of the most important agricultural traits, determining both the crop yield and quality of fleshy fruits. A typically abortive litchi cultivar, Guiwei, exhibits heterogeneity in seed size across production areas, years, and individual trees. Previous studies have shown that 'Guiwei' seed development failure is associated with endosperm arrest and chilling conditions.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!