Mechanisms of the anti-inflammatory effects of the natural secosteroids physalins in a model of intestinal ischaemia and reperfusion injury.

Br J Pharmacol

Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 - Pampulha, 31270-901 Belo Horizonte MG Brazil.

Published: September 2005

Reperfusion of an ischaemic tissue is associated with an intense inflammatory response and inflammation-mediated tissue injury. Physalins, a group of substances with secosteroidal chemical structure, are found in Physalis angulata stems and leaves. Here, we assessed the effects of physalins on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in mice and compared with the effects of dexamethasone. Following I/R injury, dexamethasone (10 mg kg(-1)) or physalin B or F markedly prevented neutrophil influx, the increase in vascular permeability in the intestine and the lungs. Maximal inhibition occurred at 20 mg kg(-1). Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. Dexamethasone or physalins effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-alpha. Interestingly, treatment with the compounds was associated with enhancement of IL-10. The anti-inflammatory effects of dexamethasone or physalins were reversed by pretreatment with the corticoid receptor antagonist RU486 (25 mg kg(-1)). The drug compounds suppressed steady-state concentrations of corticosterone, but did not alter the reperfusion-associated increase in levels of corticosterone. The IL-10-enhancing effects of the drugs were not altered by RU486. In conclusion, the in vivo anti-inflammatory actions of physalins, natural steroidal compounds, appear to be mostly due to the activation of glucocorticoid receptors. Compounds derived from these natural secosteroids may represent novel therapeutic options for the treatment of inflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576270PMC
http://dx.doi.org/10.1038/sj.bjp.0706321DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory effects
8
natural secosteroids
8
intestinal ischaemia
8
ischaemia reperfusion
8
effects dexamethasone
8
intestine lungs
8
dexamethasone physalins
8
physalins
6
effects
5
mechanisms anti-inflammatory
4

Similar Publications

Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!