Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interfacial adhesion and friction are important factors in determining the performance and reliability of microelectromechanical systems. We demonstrate that the adhesion of micromachined surfaces is in a regime not considered by standard rough surface adhesion models. At small roughness values, our experiments and models show unambiguously that the adhesion is mainly due to van der Waals dispersion forces acting across extensive non-contacting areas and that it is related to 1/Dave2, where Dave is the average surface separation. These contributions must be considered because of the close proximity of the surfaces, which is a result of the planar deposition technology. At large roughness values, van der Waals forces at contacting asperities become the dominating contributor to the adhesion. In this regime our model calculations converge with standard models in which the real contact area determines the adhesion. We further suggest that topographic correlations between the upper and lower surfaces must be considered to understand adhesion completely.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat1431 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!