Objectives: Both glucocorticoid (GC) administration and brief occlusion of the main pancreatic duct result in an increase in total islet mass. Consequently, it was questioned whether these 2 stimuli would produce similar islet growth, indicating commonality in the mechanism of expansion. To test this, we assessed the effects on morphology after single and dual stimulation of the pancreas.

Methods: Rat pancreata were harvested 56 days after (1) brief occlusion of the main pancreatic duct, (2) daily GC administration, (3) GC administration and brief occlusion, or (4) sham operation without GC administration or occlusion. The pancreata were weighed, fixed, wax embedded, and sectioned for morphologic analysis. The endocrine to exocrine ratio, endocrine mass, and the contribution that small, medium, and large islets made to increased pancreatic endocrine mass were assessed. Blood was taken immediately before termination, after overnight fasting, for analysis of serum glucose, amylase, and insulin.

Results: GC treatment resulted in increased total pancreatic mass and exocrine mass, which were dissimilar to increases elicited by brief occlusion. However, there was no significant difference in the increase in the total endocrine mass or the increased mass of small, medium, or large islets between the GC, occluded, and dually stimulated pancreata. There were also no significant differences in the mean number of cells per islet between these groups. GC administration increased both circulating glucose and insulin in both occluded and nonoccluded groups, whereas occlusion alone had no effect on these parameters.

Conclusions: Glucocorticoid administration and brief occlusion of the main pancreatic duct result in a similar expansion of islet mass. This is reflected in nonsignificant increases in endocrine mass/body weight and the percentage contribution of small, medium, and large islets to this increase. The majority of additional islet mass is from the expansion of the large islet population, although extra large islets are not found after either pancreatic treatment. The effects of GC treatment and occlusion are not additive, indicating that there is commonality in the mechanism of expansion. Because occlusion does not result in elevated glucose or insulin levels and gives rise to increased islet mass equivalent to GC administration and dual stimulation, it is unlikely that the increased islet mass after GC treatment is caused by the accompanying hyperinsulinemia as previously hypothesized.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.mpa.0000170682.66781.b9DOI Listing

Publication Analysis

Top Keywords

islet mass
24
administration occlusion
20
occlusion main
16
main pancreatic
16
pancreatic duct
16
large islets
16
glucocorticoid administration
12
mass
12
endocrine mass
12
small medium
12

Similar Publications

The forkhead box O1 (FOXO1), the first discovered member of the FoxO family, is a critical transcription factor predominantly found in insulin-secreting and insulin-sensitive tissues. In the pancreas of adults, FoxO1 expression is restricted to islet β cells. We determined that in human islet microarray datasets, FoxO1 expression is higher than other FoxO transcription factors.

View Article and Find Full Text PDF

Bi-Hormonal Endocrine Cell Presence Within the Islets of Langerhans of the Human Pancreas Throughout Life.

Cells

January 2025

Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada.

Bi-hormonal islet endocrine cells have been proposed to represent an intermediate state of cellular transdifferentiation, enabling an increase in beta-cell mass in response to severe metabolic stress. Beta-cell plasticity and regenerative capacity are thought to decrease with age. We investigated the ontogeny of bi-hormonal islet endocrine cell populations throughout the human lifespan.

View Article and Find Full Text PDF

LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK.

Mol Metab

January 2025

Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:

Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets.

View Article and Find Full Text PDF

Herein, we characterized the percentage of tacrolimus to the combined sirolimus and tacrolimus trough levels (tacrolimus %) observed during islet transplant-associated immune suppression therapy with post-transplant skin cancer. Although trough levels of tacrolimus and sirolimus were not different ( = 0.79, 0.

View Article and Find Full Text PDF

β-Cell Deletion of Hypoxia-Inducible Factor 1α (HIF-1α) Increases Pancreatic β-Cell Susceptibility to Streptozotocin.

Int J Mol Sci

December 2024

Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.

Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!