Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with (125)I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-I(Tg)) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P < 0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-I(Tg) mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo. We conclude that ABCA1 is not required for in vivo remodeling of small HDLs to larger HDL subfractions and that the hypercatabolism of normal HDL particles in knockout mice is attributable to a selective catabolism of HDL apoA-I by the kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.M500179-JLR200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!