The effects of overexpression of two Brassica CBF/DREB1-like transcription factors (BNCBF5 and 17) in Brassica napus cv. Westar were studied. In addition to developing constitutive freezing tolerance and constitutively accumulating COR gene mRNAs, BNCBF5- and 17-overexpressing plants also accumulate moderate transcript levels of genes involved in photosynthesis and chloroplast development as identified by microarray and Northern analyses. These include GLK1- and GLK2-like transcription factors involved in chloroplast photosynthetic development, chloroplast stroma cyclophilin ROC4 (AtCYP20-3), beta-amylase and triose-P/Pi translocator. In parallel with these changes, increases in photosynthetic efficiency and capacity, pigment pool sizes, increased capacities of the Calvin cycle enzymes, and enzymes of starch and sucrose biosynthesis, as well as glycolysis and oxaloacetate/malate exchange are seen, suggesting that BNCBF overexpression has partially mimicked cold-induced photosynthetic acclimation constitutively. Taken together, these results suggest that BNCBF/DREB1 overexpression in Brassica not only resulted in increased constitutive freezing tolerance but also partially regulated chloroplast development to increase photochemical efficiency and photosynthetic capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci165DOI Listing

Publication Analysis

Top Keywords

overexpression brassica
12
transcription factors
12
freezing tolerance
12
brassica cbf/dreb1-like
8
cbf/dreb1-like transcription
8
photosynthetic capacity
8
brassica napus
8
constitutive freezing
8
chloroplast development
8
photosynthetic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!