Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle.

Genes Dev

Molecular Neurobiology Program, Molecular Pathogenesis Program and Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016, USA.

Published: July 2005

Disruptions in the use of skeletal muscle lead to muscle atrophy. After short periods of disuse, muscle atrophy is reversible, and even after prolonged periods of inactivity, myofiber degeneration is uncommon. The pathways that regulate atrophy, initiated either by peripheral nerve damage, immobilization, aging, catabolic steroids, or cancer cachexia, however, are poorly understood. Previously, we found that Runx1 (AML1), a DNA-binding protein that is homologous to Drosophila Runt and has critical roles in hematopoiesis and leukemogenesis, is poorly expressed in innervated muscle, but strongly induced in muscle shortly after denervation. To determine the function of Runx1 in skeletal muscle, we generated mice in which Runx1 was selectively inactivated in muscle. Here, we show that Runx1 is required to sustain muscle by preventing denervated myofibers from undergoing myofibrillar disorganization and autophagy, structural defects found in a variety of congenital myopathies. We find that only 29 genes, encoding ion channels, signaling molecules, and muscle structural proteins, depend upon Runx1 expression, suggesting that their misregulation causes the dramatic muscle wasting. These findings demonstrate an unexpected role for electrical activity in regulating muscle wasting, and indicate that muscle disuse induces compensatory mechanisms that limit myofiber atrophy. Moreover, these results suggest that reduced muscle activity could cause or contribute to congenital myopathies if Runx1 or its target genes were compromised.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176009PMC
http://dx.doi.org/10.1101/gad.1318305DOI Listing

Publication Analysis

Top Keywords

muscle
14
skeletal muscle
12
myofibrillar disorganization
8
disorganization autophagy
8
muscle atrophy
8
congenital myopathies
8
muscle wasting
8
runx1
7
runx1 prevents
4
prevents wasting
4

Similar Publications

Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.

Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.

View Article and Find Full Text PDF

Review of upper extremity passive joint impedance identification in people with Duchenne Muscular Dystrophy.

J Neuroeng Rehabil

January 2025

Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.

Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.

View Article and Find Full Text PDF

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.

Methods And Materials: A total of 209 patients participated in the study.

View Article and Find Full Text PDF

Predicting early diagnosis of intensive care unit-acquired weakness in septic patients using critical ultrasound and biological markers.

BMC Anesthesiol

January 2025

Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang St, Chengdu, 610041, Sichuan, China.

Objective: Early diagnosis of intensive care unit-acquired weakness (ICUAW) is crucial for improving the outcomes of critically ill patients. Hence, this study was designed to identify predisposing factors for ICUAW and establish a predictive model for the early diagnosis of ICUAW.

Methods: This prospective observational multicenter study included septic patients from the comprehensive ICUs of West China Hospital of Sichuan University and 10 other hospitals between September and November 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!