The anticancer anthracyclines, doxorubicin and daunorubicin, are highly cytotoxic to both cancer and normal cells. In this work, we have investigated the capacity of cellular myeloperoxidase to inactivate these agents. We show that incubation of human leukemia HL-60 cells with the anthracyclines in the presence of hydrogen peroxide and nitrite causes irreversible oxidation of the drugs, suggesting an extensive modification of their chromophores. Methimazole, 4-aminobenzoic acid hydrazide, or azide inhibits the reaction, suggesting that it is mediated by the cellular myeloperoxidase, an enzyme naturally present in large amounts in HL-60 cells. In contrast to the intact drugs, the oxidatively transformed anthracyclines were substantially less cytotoxic for HL-60 (assayed by apoptosis) and PC3 prostate cancer cells and H9c2 rat cardiac myoblasts in vitro (assayed by clonogenic survival), indicating that the oxidative metabolism of these agents leads to their inactivation. Using tandem mass spectrometry, we identified two specific metabolic products of the anthracycline degradation, 3-methoxyphthalic acid and 3-methoxysalicylic acid. These two metabolic products were obtained as authentic compounds and were nontoxic to HL-60 leukemic cells and cardiac myocytes. These findings may have important implications for the cellular pharmacology of anthracyclines and for clinical oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-2312 | DOI Listing |
FASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
Oxidative stress plays a critical role in postmenopausal osteoporosis, yet its impact on osteoblasts remains underexplored, limiting therapeutic advances. Our study identifies phospholipid peroxidation in osteoblasts as a key feature of postmenopausal osteoporosis. Estrogen regulates the transcription of glutathione peroxidase 4 (GPX4), an enzyme crucial for reducing phospholipid peroxides in osteoblasts.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.
Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.
Vet Res Commun
January 2025
Pollution Laboratory, Freshwater and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
This investigation looked at the ameliorative role of camel whey protein hydrolysates-diet (PH) in Oreochromis niloticus stocked under alkaline conditions. One hundred sixty fish (16.02 ± 0.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
Department of Pharmacotherapeutics and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan.
Although the pathophysiology of idiosyncratic drug-induced liver injury (IDILI) is unclear, it is presumed to be immune-mediated, involving complex interactions between drug metabolism and activation of the immune system. The following four reactive metabolite production patterns are considered: (1) parent compounds into reactive metabolites within neutrophils or antigen-presenting cells (APCs), (2) reactive metabolites produced by cytochrome P450 (CYP), (3) nonreactive metabolites produced by CYP into reactive metabolites within APCs, and (4) reactive metabolites produced by non-CYPs. Reactive metabolites indirectly activate inflammasomes in APCs, leading to IDILIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!