Capacitative Ca2+ entry has been examined in several tissues and, in some, appears to be mediated by nonselective cation channels collectively referred to as "store-operated" cation channels; however, relatively little is known about the electrophysiological properties of these channels in airway smooth muscle. Consequently we examined the electrophysiological characteristics and changes in intracellular Ca2+ concentration associated with a cyclopiazonic acid (CPA)-evoked current in porcine and bovine airway smooth muscle using patch-clamp and Ca2+-fluorescence techniques. In bovine tracheal myocytes, CPA induced an elevation of intracellular Ca2+ that was dependent on extracellular Ca2+ and was insensitive to nifedipine (an L-type voltage-gated Ca2+ channel inhibitor). Using patch-clamp techniques and conditions that block both K+ and Cl- currents, we found that CPA rapidly activated a membrane conductance (I(CPA)) in porcine and bovine tracheal myocytes that exhibits a linear current-voltage relationship with a reversal potential around 0 mV. Replacement of extracellular Na+ resulted in a marked reduction of I(CPA) at physiological membrane potentials (i.e., -60 mV) that was accompanied by a shift in the reversal potential for I(CPA) toward more negative membrane potentials. In addition, I(CPA) was markedly inhibited by 10 microM Gd3+ and La3+ but was largely insensitive to 1 microM nifedipine. We conclude that CPA induces capacitative Ca2+ entry in porcine and bovine tracheal smooth muscle via a Gd3+- and La3+-sensitive, nonselective cation conductance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00242.2005 | DOI Listing |
Tissue Eng Part A
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.
The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.
View Article and Find Full Text PDFBrief Bioinform
November 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
Nonadditive genetic effects pose significant challenges to traditional genomic selection methods for quantitative traits. Machine learning approaches, particularly kernel-based methods, offer promising solutions to overcome these limitations. In this study, we developed a novel machine learning method, KPRR, which integrated a polynomial kernel into ridge regression to effectively capture nonadditive genetic effects.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
Collagens are biofunctional proteins that have been widely used in many fields, including biomedical, cosmetics, and skin care for their value in maintaining the integrity of cellular membranes. Collagens are also commonly consumed in foods and provide a source of protein and amino acids. As part of the safety assessment for this particular recombinant humanized type III (RHTypeIII) collagen produced by Komagataella phaffii SMD1168-2COL3, a series of toxicological tests were conducted.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, USA.
J Thorac Cardiovasc Surg
December 2024
Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!