Spontaneous growth of a laminin-apatite nano-composite in a metastable calcium phosphate solution.

Biomaterials

Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Published: January 2006

AI Article Synopsis

  • Researchers found that a stable laminin-containing calcium phosphate (LCP) solution can create a laminin-apatite composite layer on an ethylene-vinyl alcohol (EVOH) surface.
  • The composite layer forms through a process where laminin and apatite co-precipitate, resulting in a nano-composite structure rather than aggregation.
  • This structure enhances cell adhesion, making the material potentially useful in biomedical applications.

Article Abstract

We have previously reported that a laminin-apatite composite layer is formed on an ethylene-vinyl alcohol copolymer (EVOH) in a laminin-containing calcium phosphate (LCP) solution. In this work, the stability of the LCP solution and growth process of the laminin-apatite composite layer have been investigated. Dynamic light scattering technique revealed that the LCP solution was stable for periods as long as 24 h; it did not induce homogeneous precipitation of laminin or calcium phosphates in the solution. Analysis of the EVOH surface and the LCP solution showed that the laminin-apatite composite layer was formed via coprecipitation of laminin and apatite on the EVOH plate, i.e., spontaneous growing of apatite and simultaneous immobilization of laminin molecules or laminin-calcium phosphate nano-complexes onto its surface. Transmission electron microscopy also revealed that the laminin molecules in the resulting composite layer were not localized or aggregated, but were dispersed on a nano-scale in the entire layer. Because of this nano-composite structure, a large number of laminin molecules were stably immobilized on the EVOH plate. This may be responsible for the excellent cell adhesion properties of this type of composite material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2005.06.001DOI Listing

Publication Analysis

Top Keywords

composite layer
16
lcp solution
16
laminin-apatite composite
12
laminin molecules
12
calcium phosphate
8
layer formed
8
evoh plate
8
solution
6
composite
5
layer
5

Similar Publications

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Research on muck conditioning for EPB shield tunnelling in composite formation.

Sci Rep

December 2024

School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi, People's Republic of China.

Compared with simple formations, EPB (earth pressure balance) shield tunnelling in composite formations encounters severe problems with muck conditioning and require improved muck conditioning technology to fulfil expectations for continuous and efficient excavation. In the Nanchang Metro Line 4 Project, a water-rich sand-argillaceous siltstone composite formation is encountered. With a high moisture content and complex composite formation ratio, it is quite difficult to determine the optimum muck conditioning scheme, and thus, muck spewing accidents frequently occur during the tunnelling process.

View Article and Find Full Text PDF

The Layered Composite Roof Structure (LCRS) is a common bearing structure consisting of multiple layers of rock above a coal seam, and the energy stored in this structure plays an important role in the occurrence of rockburst. Few studies have been conducted on the theoretical modeling of energy storage in LCRS. This study theoretically developed a bending energy storage model for LCRS under three conditions, and the theoretical model was verified by simulation and experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!