The caudal parapyramidal area of the rat brain contains a population of neurons that are highly sensitive to an increase in the extracellular hydrogen ion concentration ([H+]o). Some of them fire synchronously with respiration when [H+]o is increased. These chemosensitive neurons are located in the caudal ventrolateral medulla in a medial region, closest to the pyramidal tract, and a lateral region, beneath the lateral reticular nucleus. To assess the nature of medullary connections, biotinylated dextran amine injections were performed after recordings from the neurons had been completed. The injections were located within the areas containing serotonergic neurons of the caudal parapyramidal area. The injections within the medial and lateral parts of the caudal parapyramidal region revealed bilateral terminal fields of varicosities within the nucleus of the solitary tract and the ventral respiratory column. Efferent bilateral projections to the lateral paragigantocellular, lateral reticular, and inferior olive nuclei, as well as ipsilateral projections to medial and lateral caudal parapyramidal regions were also identified. Efferent projections towards the raphe obscurus from both medial and lateral caudal parapyramidal regions were found. Medial caudal parapyramidal regions also sent efferent projections towards the raphe pallidus, B1-B3 region, and to the dorsal and ventral parts of the medullary reticular nuclei. The detection of H(+)-sensitive neurons in the caudal parapyramidal area and their projections towards the nucleus of the solitary tract and to the ventral respiratory column, associated with respiratory regulation, indicate that this region could be an excellent candidate for central chemoreception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2005.05.014 | DOI Listing |
Commun Biol
September 2020
School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
Breathing is highly sensitive to the PCO of arterial blood. Although CO is detected via the proxy of pH, CO acting directly via Cx26 may also contribute to the regulation of breathing. Here we exploit our knowledge of the structural motif of CO-binding to Cx26 to devise a dominant negative subunit (Cx26) that removes the CO-sensitivity from endogenously expressed wild type Cx26.
View Article and Find Full Text PDFNeurosci Res
June 2019
Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-Chome, Morioka, Iwate 020-8550, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan. Electronic address:
The ventral respiratory column (VRC) generates rhythmical respiration and is divided into four compartments: the Bötzinger complex (BC), pre-Bötzinger complex (PBC), rostral ventral respiratory group (rVRG), and caudal ventral respiratory group (cVRG). Serotonergic nerve fibers are densely distributed in the rostral to caudal VRC and serotonin would be one of the important modulators for the respiratory control in the VRC. In the present study, to elucidate detailed distribution of serotonergic neurons in raphe nuclei projecting to the various rostrocaudal levels of VRC, we performed combination of retrograde tracing technique by cholera toxin B subunit (CTB) with immunohistochemistry for tryptophan hydroxylase 2 (TPH2).
View Article and Find Full Text PDFNeuroscience
January 2013
Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.
Preproglucagon (PPG) neurons produce glucagon-like peptide-1 (GLP-1) and occur primarily in the nucleus tractus solitarius (NTS). GLP-1 affects a variety of central autonomic circuits, including those controlling the cardiovascular system, thermogenesis, and most notably energy balance. Our immunohistochemical studies in transgenic mice expressing YFP under the control of the PPG promoter showed that PPG neurons project widely to central autonomic regions, including brainstem nuclei.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2010
Department of Pharmacology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
Serotonin is thought to contribute to the syncopal-like response that develops during severe blood loss by inhibiting presympathetic neurons of the rostroventrolateral medulla (RVLM). Here, we tested whether serotonin cells activated during hypotensive hemorrhage, i.e.
View Article and Find Full Text PDFAuton Neurosci
June 2006
Department of Physiology and Zoology, University of Seville. 41012-Seville, Spain.
Previous studies have shown that selective inhibition of Na+/H+ exchanger type 3 (NHE3) induces intracellular acidification and activates CO2/H+-sensitive medullary neurons, mimicking the responses evoked by hypercapnic stimuli. In addition, NHE3 blockers administration decreases the duration of apnoea induced by laryngeal stimulation, presumably by means of central chemoreceptor activation. To test the hypothesis that the central chemoreceptor network may be affected by NHE3 inhibition, brainstem c-Fos immunoreactive cell counting was performed after systemic administration of the NHE3 blocker AVE1599 (Aventis Pharma Deutschland GmbH) (2 mg/kg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!