An object moving in depth produces retinal images that change in position over time by different amounts in the two eyes. This allows stereoscopic perception of motion in depth to be based on either one or both of two different visual signals: inter-ocular velocity differences, and binocular disparity change over time. Disparity change over time can produce the perception of motion in depth. However, demonstrating the same for inter-ocular velocity differences has proved elusive because of the difficulty of isolating this cue from disparity change (the inverse can easily be done). No physiological data are available, and existing psychophysical data are inconclusive as to whether inter-ocular velocity differences are used in primate vision. Here, we use motion adaptation to assess the contribution of inter-ocular velocity differences to the perception of motion in depth. If inter-ocular velocity differences contribute to motion in depth, we would expect that discriminability of direction of motion in depth should be improved after adaptation to frontoparallel motion. This is because an inter-ocular velocity difference is a comparison between two monocular frontoparallel motion signals, and because frontoparallel speed discrimination improves after motion adaptation. We show that adapting to frontoparallel motion does improve both frontoparallel speed discrimination and motion-in-depth direction discrimination. No improvement would be expected if only disparity change over time contributes to motion in depth. Furthermore, we found that frontoparallel motion adaptation diminishes discrimination of both speed and direction of motion in depth in dynamic random dot stereograms, in which changing disparity is the only cue available. The results provide strong evidence that inter-ocular velocity differences contribute to the perception of motion in depth and thus that the human visual system contains mechanisms for detecting differences in velocity between the two eyes' retinal images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616272 | PMC |
http://dx.doi.org/10.1016/j.visres.2005.05.021 | DOI Listing |
Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.
A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Tsinghua University, Haidian District, Beijing, 100084, P. R. China, Beijing, Beijing, 100084, CHINA.
Efficient propulsion has been a central focus of research in the field of biomimetic underwater vehicles. Compared to the prevalent fish-like reciprocating flapping propulsion mode, the sperm-like helical propulsion mode features higher efficiency and superior performance in high-viscosity environments. Based on the previously developed sperm-inspired robot, this paper focuses on its dynamic modeling and depth control research.
View Article and Find Full Text PDFPLoS One
January 2025
School of Sport Science, Beijing Sport University, Beijing, China.
This study investigates the effect of varying tennis racket string tension on stroke effect and the dynamic response of the racket. Using the YSV dynamic acceleration signal acquisition system and a portable radar speed gun collect data on racket acceleration, stress-strain signals, and ball speed from 15 male athletes. Stroke accuracy and depth were assessed according to the International Tennis Number.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Scuola Superiore Meridionale, Napoli, Italy.
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!