The Inuit population of the Arctic has always been at risk of acquiring trichinellosis and severe outbreaks have been recorded in Alaska and Canada. In West Greenland, a number of large outbreaks took place during the 1940s and 1950s; they involved total 420 cases including 37 deaths. Since then only sporadic cases have been reported. Here, we describe an outbreak of infection with Trichinella spp. after consumption of infected meat presumably from walrus or polar bear caught in western Greenland. Six persons who had eaten of the walrus and polar bear meat were two males and four females, age range 6--47 years. Using ELISA and Western blot analysis (Trichinella-specific IgG antibodies against excreted/secreted antigen and synthetic tyvelose antigen, respectively) four of these persons were found to be sero-positive for Trichinella antibodies, with three of these having clinical symptoms compatible with trichinellosis. On re-test, 12--14 months later one of the two sero-negative persons had sero-converted, probably due to a new, unrelated infection. This study demonstrates that acquiring Trichinella from the consumption of marine mammals remains a possibility in Greenland, and that cases may go undetected. Trichinellosis in Greenland can be prevented by the implementation of public health measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2005.05.041DOI Listing

Publication Analysis

Top Keywords

west greenland
8
walrus polar
8
polar bear
8
greenland
5
outbreak trichinellosis
4
trichinellosis associated
4
associated consumption
4
consumption game
4
game meat
4
meat west
4

Similar Publications

Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems.

View Article and Find Full Text PDF
Article Synopsis
  • The discharge of calved ice and subglacial runoff in Disko Bay, home to Sermeq Kujalleq glacier, is expected to influence marine biogeochemistry, particularly affecting the marine silica cycle due to elevated dissolved silica (dSi) from glaciers.
  • The study analyzes silica dynamics in various regions around Disko Bay, finding that land-terminating glaciers show conservative dSi patterns, whereas marine-terminating glaciers significantly alter nutrient distribution through subglacial discharge plumes.
  • The research quantifies contributions to dSi enrichment, highlighting that a large fraction comes from saline water entrainment, with minor contributions from icebergs and amorphous silica dissolution, ultimately adding a small but significant dSi flux to the environment.
View Article and Find Full Text PDF

The oceans play a pivotal role in mitigating climate change by sequestering approximately 25% of annually emitted carbon dioxide (CO). High-latitude oceans, especially the Arctic continental shelves, emerge as crucial CO sinks due to their cold, low saline, and highly productive ecosystems. However, these heterogeneous regions remain inadequately understood, hindering accurate assessments of their carbon dynamics.

View Article and Find Full Text PDF

The work presented here marks a further advance in expert uncertainty quantification. In a recent probabilistic evaluation of ice sheet process contributions to sea level rise, tail dependence was elicited and propagated through an uncertainty analysis for the first time. The elicited correlations and tail dependencies concerned pairings of three processes: Accumulation, Discharge and Run-off, which operate on major ice sheets in the West and East Antarctic and in Greenland.

View Article and Find Full Text PDF

Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!