A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Post-fire surface water quality: comparison of fire retardant versus wildfire-related effects. | LitMetric

Post-fire surface water quality: comparison of fire retardant versus wildfire-related effects.

Chemosphere

Analytical Laboratory Services Inc., 318 East Kaler Drive, Phoenix, AZ 85020, USA.

Published: February 2006

An understanding of the environmental effects of the use of wildland fire retardant is needed to provide informed decision-making regarding forest management. We compiled data from all post-fire surface water monitoring programs where the fire retardant constituents ammonia, phosphorus, and cyanide were measured, and data were available in the public domain. For streams near four major wildfires, we evaluated whether these chemicals originated primarily from fire or from retardant use. We compared measured concentrations in streams where chemical wildland fire retardant was applied with concentrations in streams draining areas where retardant was not used. Correlations with calcium provided an additional line of evidence, because calcium concentrations in ash are much higher than in retardant. Ammonia, phosphorus, and total cyanide were found in streams in burned areas where retardant was not used, at concentrations similar to those found in areas where retardant was applied. Concentrations of weak acid dissociable cyanide were generally non-detected or very low, whether or not wildland fire retardant was used in the watershed. These results indicate that the application of wildland fire retardant had minimal effects on proximate surface water quality. Cyanide concentrations in post-fire stormwater runoff were not affected by the presence of ferrocyanide in the retardant formulas and were due to pyrogenic sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2005.05.031DOI Listing

Publication Analysis

Top Keywords

fire retardant
28
wildland fire
16
surface water
12
retardant
12
areas retardant
12
post-fire surface
8
water quality
8
ammonia phosphorus
8
concentrations streams
8
retardant applied
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!