Group I metabotropic glutamate (mGlu) receptors (i.e. mGlu1 and mGlu5) coupled to phospholipase C have been widely investigated for their possible role in excitotoxic and post-ischemic neuronal death. Recently, phospholipase C has been shown to directly stimulate the activity of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair that has been proposed to play a key role in necrotic cell death. In this study, we investigated whether the stimulation of group I mGlu receptors leads to an increase in PARP activity, as detected by flow cytometry, immunodot blot and immunocytochemistry, both in baby hamster kidney cells transfected with mGlu1a or mGlu5a receptors and in cultured cortical cells. Our results show that the group I mGlu receptor agonist DHPG elicited a significant increase in PARP activity that was completely abolished by the administration of the mGlu1 antagonist 3-MATIDA and partially prevented, in cortical neurons, by the mGlu5 antagonist MPEP. To evaluate whether this pathway is involved in post-ischemic neuronal death, we used a sublethal model of oxygen-glucose deprivation in mixed cortical cell cultures. DHPG exacerbated neuronal death, and this effect was significantly prevented by the application of the PARP inhibitor DPQ. This novel pathway may contribute to the effects of mGlu1 receptors in the mechanisms leading to post-ischemic neuronal death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2005.05.017 | DOI Listing |
Int J Cardiol Heart Vasc
February 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Atrial fibrillation (AF) is the most common tachyarrhythmia and seriously affects human health. Key targets of AF bioinformatics analysis can help to better understand the pathogenesis of AF and develop therapeutic targets. The left atrial appendage tissue of 20 patients with AF and 10 patients with sinus rhythm were collected for sequencing, and the expression data of the atrial tissue were obtained.
View Article and Find Full Text PDFTzu Chi Med J
August 2024
Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
Endoplasmic reticulum (ER) is a crucial organelle associated with cellular homeostasis. Accumulation of improperly folded proteins results in ER stress, accompanied by the reaction involving triggering unfolded protein response (UPR). The UPR is mediated through ER membrane-associated sensors, such as protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α, and activating transcription factor 6 (ATF6).
View Article and Find Full Text PDFAm J Stem Cells
December 2024
Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences Khorramabad, Iran.
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile. Electronic address:
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs).
View Article and Find Full Text PDFMol Cell Neurosci
January 2025
Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Parkinson's disease (PD) is a neurodegenerative disorder marked by dopaminergic (DA) neuron degeneration in the substantia nigra (SN). Conventional dopamine replacement therapies provide limited long-term efficacy and significant side effects. Emerging evidence suggests ferroptosis-a form of cell death driven by iron-dependent lipid peroxidation-contributes to PD pathology, though direct evidence linking dysregulation of ferroptosis-related genes in DA neuron loss in PD remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!