Objectives: The aim of this study was to evaluate the effect of variable dose and release kinetics of paclitaxel on neointimal hyperplasia.

Background: Conventional paclitaxel-eluting stents use a durable polymer coating as a vehicle for drug delivery. The Conor stent (Conor Medsystems, Menlo Park, California) with intra-strut wells and erodable polymer is specifically designed for drug delivery with programmable pharmacokinetics.

Methods: Two hundred and forty-four patients with single vessel disease received either a bare metal Conor stent (n = 53) or one of six different release formulations that varied in dose (10 or 30 microg) and elution release kinetics (first order, zero order), direction (abluminal, luminal), and duration (5, 10, and 30 days). End points at six months (bare stent group) and at four months (eluting stent groups) were angiographic late loss and neointimal tissue volume by intravascular ultrasound and the rate of major adverse cardiac events (MACE).

Results: The lowest in-stent late loss (0.38 mm, p <0.01, and 0.30 mm, p <0.01) and volume obstruction (8%, p <0.01, and 5%, p <0.01) were observed with the 10-microg and 30-microg doses in the 30-day release groups respectively, whereas the highest in-stent late loss (0.88 mm), volume obstruction (26%), and restenosis rate (11.6%) were observed in the bare stent group. The overall MACE rate of the eluting stent group was 8.6%: death 0.5%, myocardial infarction 2.7%, and target lesion revascularization (TLR) 5.3%. Sub-acute thrombosis was 0.5%. The TLR rates in the two 30-day release groups were 0% and 3.4%.

Conclusions: This novel eluting stent platform, using an erodable polymer with complete elution of low doses of paclitaxel, is safe. The inhibition of the in-stent neointimal hyperplasia was best in the long release groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2005.03.069DOI Listing

Publication Analysis

Top Keywords

release kinetics
12
variable dose
8
dose release
8
drug delivery
8
conor stent
8
late loss
8
stent
5
release
4
kinetics neointimal
4
neointimal hyperplasia
4

Similar Publications

Mechanistic Investigation of the Ce(III) Chloride Photoredox Catalysis System: Understanding the Role of Alcohols as Additives.

J Am Chem Soc

January 2025

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.

Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics.

View Article and Find Full Text PDF

The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.

View Article and Find Full Text PDF

INCREASED CITRULLINATED HISTONE H3 LEVELS AND ACCELERATED THROMBIN KINETICS IN TRAUMA PATIENTS WHO DEVELOP VENOUS THROMBOEMBOLISM.

Shock

December 2024

Division of Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, United States 55905.

Background: Neutrophil extracellular traps (NETs), and its formation and release, known as NETosis, may play a role in the initiation of thrombin generation (TG) in trauma. The objective of this study was to assess whether trauma patients, who develop symptomatic venous thromboembolism (VTE), have increased levels of plasma citrullinated histone H3 (CitH3) and accelerated TG kinetics.

Methods: Patients presenting to a Level I Trauma Center as trauma activations had samples collected within 12 hours of time of injury (TOI), alongside healthy volunteers (HV).

View Article and Find Full Text PDF

Reversible multivalent carrier redox exceeding intercalation capacity boundary.

Nat Commun

January 2025

Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.

Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.

View Article and Find Full Text PDF

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!