Qualitative systems for rating animal antimicrobial risks using ordered categorical labels such as "high,""medium," and "low" can potentially simplify risk assessment input requirements used to inform risk management decisions. But do they improve decisions? This article compares the results of qualitative and quantitative risk assessment systems and establishes some theoretical limitations on the extent to which they are compatible. In general, qualitative risk rating systems satisfying conditions found in real-world rating systems and guidance documents and proposed as reasonable make two types of errors: (1) Reversed rankings, i.e., assigning higher qualitative risk ratings to situations that have lower quantitative risks; and (2) Uninformative ratings, e.g., frequently assigning the most severe qualitative risk label (such as "high") to situations with arbitrarily small quantitative risks and assigning the same ratings to risks that differ by many orders of magnitude. Therefore, despite their appealing consensus-building properties, flexibility, and appearance of thoughtful process in input requirements, qualitative rating systems as currently proposed often do not provide sufficient information to discriminate accurately between quantitatively small and quantitatively large risks. The value of information (VOI) that they provide for improving risk management decisions can be zero if most risks are small but a few are large, since qualitative ratings may then be unable to confidently distinguish the large risks from the small. These limitations suggest that it is important to continue to develop and apply practical quantitative risk assessment methods, since qualitative ones are often unreliable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1539-6924.2005.00615.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!