Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-005-1332-xDOI Listing

Publication Analysis

Top Keywords

missense mutation
8
mutations tmprss3
8
non-syndromic deafness
8
proteolytic cleavage
8
mutations
5
tmprss3
5
novel tmprss3
4
tmprss3 missense
4
mutation dfnb8/10
4
dfnb8/10 family
4

Similar Publications

Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Background: A complex, multicellular disease with genetic and immunological elements, Alzheimer's disease (AD) affects millions worldwide. There has been previous research linking AD to the missense variants ABI3-rs616338-T and PLCG2-rs72824905-G, and the altered expression of these genes has been shown to disrupt microglial function. In our understanding of AD risk and resilience, limited research has been conducted on how these variants affect microglial subtypes and states in AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!