Organ preservation protocols in head and neck squamous cell carcinoma (HNSCC) are limited by tumors that fail to respond. We observed that larynx preservation and response to chemotherapy is significantly associated with p53 overexpression, and that most HNSCC cell lines with mutant p53 are more sensitive to cisplatin than those with wild-type p53. To investigate cisplatin resistance, we studied two HNSCC cell lines, UM-SCC-5 and UM-SCC-10B, and two resistant sublines developed by cultivation in gradually increasing concentrations of cisplatin. The cisplatin-selected cell lines, UM-SCC-5PT and UM-SCC-10BPT, are 8 and 1.5 times more resistant to cisplatin than the respective parental cell lines, respectively. The parental lines overexpress p53 and contain p53 mutations but the cisplatin-resistant cell lines do not, indicating that cells containing mutant p53 were eliminated during selection. Bcl-x(L) expression increased in the cisplatin-resistant lines relative to the parental lines, whereas Bcl-2 expression was high in the parental lines and decreased in the cisplatin-resistant lines. Thus, cisplatin selected for wild-type p53 and high Bcl-x(L) expression in these cells. We tested a small-molecule BH3 mimetic, (-)-gossypol, which binds to the BH3 domain of Bcl-2 and Bcl-x(L), for activity against the parental and cisplatin-resistant cell lines. At physiologically attainable levels, (-)-gossypol induces apoptosis in 70% to 80% of the cisplatin-resistant cells but only in 25% to 40% of the parental cells. Thus, cisplatin-resistant cells seem to depend on wild-type p53 and Bcl-x(L) for survival and BH3 mimetic agents, such as (-)-gossypol, may be useful adjuncts to overcome cisplatin resistance in HNSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-05-0081 | DOI Listing |
NPJ Precis Oncol
January 2025
Zentalis Pharmaceuticals, Inc., San Diego, CA, USA.
Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK.
Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.
View Article and Find Full Text PDFNat Commun
January 2025
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Spatial protein expression technologies can map cellular content and organization by simultaneously quantifying the expression of >40 proteins at subcellular resolution within intact tissue sections and cell lines. However, necessary image segmentation to single cells is challenging and error prone, easily confounding the interpretation of cellular phenotypes and cell clusters. To address these limitations, we present STARLING, a probabilistic machine learning model designed to quantify cell populations from spatial protein expression data while accounting for segmentation errors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!