P/C-type inactivation of Kv channels is thought to involve conformational changes in the outer pore of the channel, culminating in a partial constriction of the selectivity filter. Recent studies have identified a number of phenotypic differences in the inactivation properties of different Kv channels, including different sensitivities to elevation of extracellular K+ concentration, and different state dependencies of inactivation. We have demonstrated that an alternatively spliced short form of Kv1.5, resulting in disruption of the T1 domain, exhibits a shift in the state dependence of inactivation in this channel, and in the current study we have examined this further to contrast the properties of inactivation from open versus closed states. In a TEA+-sensitive mutant of Kv1.5 (Kv1.5 R487T), 10 mM extracellular TEA+ inhibits inactivation in both full-length and T1-deleted channels, but does not inhibit closed-state inactivation in T1-deleted channel forms. Similarly, substitution of K+ and Na+ with Cs+ ions in the recording medium inhibits inactivation of both full-length and T1-deleted channel forms, but fails to inhibit closed-state inactivation of T1-deleted channels. Collectively, these data distinguish between open-state and closed-state inactivation, and suggest the presence of multiple possible mechanisms of inactivation coexisting in Kv1 channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474772 | PMC |
http://dx.doi.org/10.1113/jphysiol.2005.087148 | DOI Listing |
J Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing (CP) gram-negative bacteria are the major public health concerns. Gowns used by healthcare workers (HCWs) in daily practice are a source of hospital-acquired infections in hospital settings. The study aimed to determine the prevalence of extended-spectrum beta-lactamase and carbapenemase-producing gram-negative bacteria from gowns of healthcare workers at Debre Berhan Comprehensive Specialized Hospital, Amhara Regional State, Ethiopia.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Michigan Medicine, University Hospital, Floor B1 Reception C 1500 E Medical Center Dr SPC 5030, Ann Arbor, MI, 48109, USA.
Anderson-Fabry disease (AFD) is a X-linked lysosomal storage disorder that can result in cardiac dysfunction including left ventricular hypertrophy (LVH) and conduction abnormalities (Frontiers in cardiovascular medicine vol. 10) [1]. The manifestations of AFD in women may be isolated to one organ and occur late in life due to the random inactivation of the X chromosome.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!