A numerical study of worker exposure to a gaseous contaminant: variations on body shape and scalar transport model.

J Occup Environ Hyg

Mechanical and Aerospace Engineering Department, West Virginia University, Morgantown, West Virginia 26506-6106, USA.

Published: June 2005

Three-dimensional computational fluid dynamics simulations are used to investigate the distribution and level of contaminant concentrations in the true breathing zone (at the nose and mouth) when toxic airborne contaminants are released within an arm's length in front of the worker who has his back to the airflow. The effects of different body shapes on fluid flow and concentration patterns around the body in a wind tunnel were evaluated and clarified that a sharp body or a block may not be a good surrogate for the human form in consideration of occupational and environmental health studies. The comparison of the concentration field calculated with the Eulerian and Lagrangian methods revealed that the Eulerian method has a more diffusive nature than the Lagrangian method. The concentrations at different locations were also compared to determine the optimum sampling location. It was found that the concentration at the breathing zone may be significantly different from the one at the chest area. The influence of the heat flux from the body was studied at two different Reynolds numbers. Predictions indicate that the heat flux may have a significant impact on exposure especially when the convection induced by buoyancy dominates the flow.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15459620590961684DOI Listing

Publication Analysis

Top Keywords

breathing zone
8
heat flux
8
body
5
numerical study
4
study worker
4
worker exposure
4
exposure gaseous
4
gaseous contaminant
4
contaminant variations
4
variations body
4

Similar Publications

Background: Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes.

View Article and Find Full Text PDF

Background: Neonatal sepsis remains one of the most common causes of morbidity and mortality among neonates in developing countries. It can cause severe morbidities and sequelae, even though patients survive. Prolonged recovery time of neonatal sepsis leads to hospitalization, increased cost of treatments, antimicrobial resistance, disseminated intravascular coagulation, respiratory failure, septic shock, brain lesions, renal failure, and cardiovascular dysfunction, and eventually death.

View Article and Find Full Text PDF

Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients.

View Article and Find Full Text PDF

Background: HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 limits its potential therapeutic application.

View Article and Find Full Text PDF

Responses of soil respiration and its temperature sensitivity to nitrogen and phosphorus depositions in a riparian zone.

J Environ Manage

February 2025

Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.

Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!