A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric a-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and (1)H-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblastsAs we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08977190500096061DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
12
disulfide bond
12
role disulfide
8
bonds structure
8
structure function
8
disulfide
8
activity ec50
8
tertiary structure
8
structure
6
function murine
4

Similar Publications

In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.

View Article and Find Full Text PDF

Tunable aptamer-MXene sensing interface for label-free and real-time detection of toxic pollutants in water samples.

Biosens Bioelectron

December 2024

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

Stable and low-cost field-effect transistor (FET)-based biosensors are vital for the on-site detection of toxic pollutants in environmental monitoring applications. In this study, a tunable aptamer-MXene sensing interface was constructed to develop renewable FET biosensors. This was achieved through the reversible disulfide bond (-S-S-) reaction between the SH-TiCT film and thiolated aptamer.

View Article and Find Full Text PDF

Production of Hyaluronidase by .

J Fungi (Basel)

December 2024

Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Hyaluronidases have been a subject of great interest in medical and cosmeceutical applications. Previously, our group demonstrated that the venom glands of contain hyaluronidase enzymes (VesT2s), and heterologous expression of the corresponding gene () in systems results in inclusion bodies, necessitating functional folding using urea. Here, we report the successful heterologous expression of VesT2a in the expression system, with gene construction achieved using Golden.

View Article and Find Full Text PDF

The study aimed to prepare complex gels of sonicated quinoa protein (QP) and polysaccharides, comparing the effects of different protein components and pH on gel properties. FTIR analysis demonstrated that the β-structure in protein at pH 7.0 was enhanced by ultrasonic treatment, which could promote the formation of a gel network.

View Article and Find Full Text PDF

Collaborative Reduction-Induced Nickel-Catalytic Selective C-S Coupling of Aryl Di/Trithiosulfonates with Aryl Halides.

Org Lett

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.

Metal-catalytic conversion of polysulfide reagents is a major challenge in organic synthesis due to its challenging activation modes of multiple S-S bonds. The utilization of aryl di- and trithiosulfonates in nickel-catalyzed reductive coupling with aryl halides has been unexplored. Herein, we unprecedentedly describe PPh and Zn-collaborative reduction-induced nickel-catalytic selective C-S coupling of aryl di/trithiosulfonates with aryl halides to access sulfides over common disulfides or trisulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!