Emergence of attention within a neural population.

Neural Netw

Loria Laboratory, Campus Scientifique, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.

Published: June 2006

We present a dynamic model of attention based on the Continuum Neural Field Theory that explains attention as being an emergent property of a neural population. This model is experimentally proved to be very robust and able to track one static or moving target in the presence of very strong noise or in the presence of a lot of distractors, even more salient than the target. This attentional property is not restricted to the visual case and can be considered as a generic attentional process of any spatio-temporal continuous input.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2005.04.004DOI Listing

Publication Analysis

Top Keywords

neural population
8
emergence attention
4
attention neural
4
population dynamic
4
dynamic model
4
model attention
4
attention based
4
based continuum
4
continuum neural
4
neural field
4

Similar Publications

Background: People with subclinical atrial fibrillation are at increased risk of stroke, albeit to a lesser extent than those with clinical atrial fibrillation, leading to an ongoing debate regarding the benefit of anticoagulation in these individuals. In the ARTESiA trial, the direct-acting oral anticoagulant apixaban reduced stroke or systemic embolism compared with aspirin in people with subclinical atrial fibrillation, but the risk of major bleeding was increased with apixaban. In a prespecified subgroup analysis of ARTESiA, we tested the hypothesis that people with subclinical atrial fibrillation and a history of stroke or transient ischaemic attack, who are known to have an increased risk of recurrent stroke, would show a greater benefit from oral anticoagulation for secondary stroke prevention compared with those without a history of stroke or transient ischaemic attack.

View Article and Find Full Text PDF

Preschool-onset major depressive disorder (PO-MDD) is an impairing pediatric mental health disorder that impacts children as young as three years old. There is limited work dedicated to uncovering neural measures of this early childhood disorder which could be leveraged to further understand both treatment responsiveness and future depression risk. Event-related potentials (ERPs) such as the P300 have been employed extensively in adult populations to examine depression-related deficits in cognitive and motivational systems.

View Article and Find Full Text PDF

Predicting health-related outcomes can help with proactive healthcare planning and resource management. This is especially important on the older population, an age group growing in the coming decades. Considering longitudinal rather than cross-sectional information from primary care electronic health records (EHRs) can contribute to more informed predictions.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection in most of the population. However, JCPyV can reactivate in immunocompromised individuals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease with no approved treatment. Mutations in the hypervariable non-coding control region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropathogenesis, yet few metanalyses document these associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!