Our goals were to identify biochemical markers for transient global ischemia-induced delayed neuronal death and test possible drug therapies against this neuronal damage. Four-vessel occlusion (4-VO) for 20 min was used as a rat model. The temporal expression profiles of three glutamate transporters (GLT-1, GLAST and EAAC1) were evaluated in the CA1 region of the hippocampus and the striatum. The protein levels of the GLT-1 were significantly down-regulated between 3 and 6 h after ischemia-reperfusion in the CA1 region and striatum, returned to the control (2-VO) levels 24 h after reperfusion and remained unchanged for up to 7 days. The levels of GLAST in the CA1 region and striatum, and EAAC1 in the CA1 region did not change after ischemia from 1 h to 7 days. Pretreatment with group III metabotropic glutamate receptor antagonist s-alpha-MCPA (20 microg/5 microl) 30 min prior to 4-VO significantly restored the GLT-1 levels in the CA1 region caused by global ischemia at both 3 and 6 h after reperfusion. The loss of pyramidal neurons in the CA1 region due to ischemia-reperfusion could also be prevented by intraventricular pretreatment with s-alpha-MCPA. The current findings pinpoint the significance of GLT-1 during ischemia/reperfusion and suggest a potential application of group III metabotropic glutamate receptor antagonist against ischemic/hypoxic neuronal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2005.05.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!