Capillarity-dissolution system for a two-dimensional geometry.

J Colloid Interface Sci

Département de Mathématiques Appliquées, CNRS-UMR 6620, Université Blaise Pascal, F-63170 Aubière, France.

Published: December 2005

We consider a system composed of two fluids in contact with a solid where one of these fluids dissolves the solid material. Both the dissolution process and the capillary phenomena play a role in the system evolution, which is analyzed on the basis of stability arguments for a two-dimensional geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.05.097DOI Listing

Publication Analysis

Top Keywords

two-dimensional geometry
8
capillarity-dissolution system
4
system two-dimensional
4
geometry consider
4
consider system
4
system composed
4
composed fluids
4
fluids contact
4
contact solid
4
solid fluids
4

Similar Publications

We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities.

Nanomaterials (Basel)

January 2025

Institute of Information Photonics Technology, School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.

Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices.

View Article and Find Full Text PDF

A Cordial Introduction to Double Scaled SYK.

Rep Prog Phys

January 2025

SISSA, via Bonomea 265, 34136 Trieste, Trieste, 34136, ITALY.

We review recent progress regarding the double scaled Sachdev-Ye-Kitaev model and other p-local quantum mechanical random Hamiltonians. These models exhibit an expansion using chord diagrams, which can be solved by combinatorial methods. We describe exact results in these models, including their spectrum, correlation functions, and Lyapunov exponent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!