A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1. | LitMetric

Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1.

Cardiovasc Res

Center for Immunology and Inflammation, Institute for Medical Research, North Shore-Long Island Jewish (LIJ) Health System, USA.

Published: November 2005

Objectives: Severe sepsis is associated with increased total peripheral resistance (TPR) and decreased organ blood flow, in which endothelin-1 (ET-1) plays an important role. Plasma levels of ghrelin, a newly-identified endogenous ligand for growth hormone secretagogue receptor and a potent vasodilatory peptide, are significantly reduced in sepsis. Ghrelin downregulation heralds the hypodynamic response in severe sepsis. Therefore, we hypothesized that the administration of exogenous ghrelin improves organ blood flow by downregulation of ET-1 under such conditions.

Methods: Male adult Sprague-Dawley rats were subjected to sepsis by cecal ligation and puncture (CLP). At 5 h post-CLP, a bolus intravenous injection of 2 nmol ghrelin was followed by a continuous infusion of 12 nmol ghrelin via a primed mini-pump over 15 h. At 20 h post-CLP (i.e., severe sepsis), cardiac output (CO), stroke volume (SV), TPR, and organ blood flow were measured using (141)Ce-microspheres. Plasma ET-1 levels and preproET-1 gene expression in the liver, small intestine, and kidneys were measured by ELISA and RT-PCR, respectively. The direct effect of ghrelin on ET-1 production was studied using cultured human umbilical vein endothelial cells (HUVECs) treated with tumor necrosis factor-alpha (TNF-alpha).

Results: Ghrelin administration reduced TPR, increased CO, SV, and organ blood flow, downregulated preproET-1 gene expression, and decreased plasma levels of ET-1 in sepsis. Ghrelin inhibited TNF-alpha-induced ET-1 release from HUVECs in a dose-dependent manner. Moreover, ghrelin inhibited TNF-alpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVECs.

Conclusions: The improvement of tissue perfusion by ghrelin in severe sepsis appears to be mediated by downregulation of ET-1 involving a NF-kappaB-dependent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2005.06.011DOI Listing

Publication Analysis

Top Keywords

severe sepsis
20
organ blood
16
blood flow
16
ghrelin
11
ghrelin improves
8
tissue perfusion
8
sepsis
8
plasma levels
8
sepsis ghrelin
8
downregulation et-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!