Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia.

Chemosphere

Unitat d'Ecofisiologia CSIC-CEAB-CREAF (Center for Ecological Research and Forestry Applications), Edifici C, Campus Universitat Autònoma de Barcelona, Bellaterra 08193 (Barcelona) Spain.

Published: September 2005

We studied trace element accumulation in the moss Hypnum cupressiforme and the widely distributed Mediterranean trees Quercus ilex and Pinus halepensis located at increasing distances from the Barcelona Metropolitan Area. Hypnum cupressiforme, Quercus ilex and, to a somewhat lesser extent, Pinus halepensis, have proved to be adequate as possible accumulative monitoring species in relation to trace elements pollution. No significant effects of crown orientation were found. One-year old leaves generally accumulated more trace elements than current-year leaves. All the studied trace elements showed greatest concentrations in the Barcelona Metropolitan Area, with lead, cadmium and arsenic concentrations being especially high. In general, trace element concentrations in biomass were similar or higher than the values reported from other Mediterranean urban areas of Europe. The top soil-layer concentrations were also higher in the Barcelona Metropolitan Area indicating the existence of mechanisms of atmospheric deposition and/or concentration in the soil. The lower values of Pb of airborne origin relative to other elements such as Cd, Cu, Zn and Sb suggest that traffic exhausts are not the only important focus of pollutants in this area. The results of biomass concentrations and of enrichment factor of biomasses respect to bedrock and soils show that atmospheric inputs account for the higher trace element concentrations in the Barcelona Metropolitan Area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2005.01.059DOI Listing

Publication Analysis

Top Keywords

trace element
16
barcelona metropolitan
16
metropolitan area
16
hypnum cupressiforme
12
quercus ilex
12
pinus halepensis
12
trace elements
12
element accumulation
8
accumulation moss
8
moss hypnum
8

Similar Publications

This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.

View Article and Find Full Text PDF

Toxic Effects of Cobalt on Erythroid Progenitor Cells.

Chem Res Toxicol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).

View Article and Find Full Text PDF

The role of serum zinc and selenium levels in etiology of febrile seizures.

Clin Exp Pediatr

January 2025

Department of Pediatrics, Division of Child Neurology, Fırat University Faculty of Medicine, Elazıg, Turkey.

Background: Febrile seizures (FSs) are the most common form of childhood seizures. Determining the role of trace elements in the pathophysiology of FSs will contribute to the management of FSs by pediatricians.

Purpose: This study aimed to investigate the effects of zinc and selenium on the nervous system and how they may influence the risk of FSs.

View Article and Find Full Text PDF

An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material.

View Article and Find Full Text PDF

The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!