Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pK(a) values in DMSO for 22 di- and triprotected hydrazine NH acids and two monosubstituted hydrazines have been determined using potentiometric titration. The results of density functional theory calculations at the B3LYP/6-311+G level of gas-phase acidities of a representative selection of mono-, di-, and trisubstituted hydrazines are compared with both the relevant published and novel experimental titration data. In the course of this work, a rough estimation of the pK(a) value of hydrazine in DMSO (ca. 38.0) has been deduced. For typical triprotected compounds of this kind containing moderately electron-withdrawing carbamate and imidodicarbonate or arenesulfonylcarbamate functions the pK(a) values fall in the range 15.1-17.3, whereas for N,N'-diprotected hydrazines with a carbamate and an aromatic sulfonyl group the corresponding values are 12.7-14.5. Several of these triprotected derivatives have recently been applied preparatively in stepwise synthesis of substituted hydrazines using alkyl halides as electrophiles in the presence of a phase transfer catalyst, and a few of them, with varying success, have been examined in model experiments with benzyl alcohol, triphenylphosphine, and diethyl azodicarboxylate in the Mitsunobu reaction. The dependence of the reactivity on the intrinsic acidity of the hydrazines in this reaction is highlighted. Furthermore, the regioselective alkylation of an N,N'-diprotected hydrazine can be rationalized on the basis of the presented data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo050680u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!