Acrylamide (AAm) is formed from asparagine (Asn) and reducing sugar during cooking of foods at high temperature. We examined the formation of AAm in a model system using a glass fiber filter paper, and looked for suitable conditions for inhibiting AAm formation. In frying, the formation rate was about 10 times that in a moistureless oven. Increase of frying temperature and frying time increased AAm formation when the residual moisture was 5% or less. AAm increased with increasing amount of glucose (Glc) addition up to 1:1 with respect to Asn, but then decreased. On the other hand, in the case of fructose, as the amount added was increased, AAm increased accordingly. The AAm formation rate with respect to Asn increased when valine (Val) was co-present in a Glc and Asn reaction system. Cysteine and lysine inhibited the AAm formation rate. Pathways for the formation of AAm are proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3358/shokueishi.46.33 | DOI Listing |
Nat Comput Sci
December 2024
Google DeepMind, Mountain View, CA, USA.
Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials.
View Article and Find Full Text PDFCell
December 2024
Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France. Electronic address:
Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations.
View Article and Find Full Text PDFChemosphere
December 2024
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Hokkaido, Japan.
At the Fukushima Daiichi Nuclear Power Station (FDNPS), continuous water circulation cools fuel debris, leading to the presence of radionuclides such as Sr-30, Cs-137, and I-129 in the cooling water. These radionuclides are adsorbed and co-precipitated by various materials. Among them, I-129 is a key radionuclide for safety assessment during the final disposal of adsorbent and co-precipitation materials, owing to its long half-life and poor sorption.
View Article and Find Full Text PDFActa Biomater
November 2024
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:
Photothermal therapy (PTT) is a promising treatment strategy for malignant tumors. Photothermal agents which can achieve efficient photothermal conversion in the NIR-II region plays crucial roles in this remedy. Here, we report one type of thermo-responsive gold nanorod vesicles USGRV-17-AAG for combined NIR-II photothermal therapy and chemotherapy of solid tumors.
View Article and Find Full Text PDFNature
December 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Needle-based injections currently enable the administration of a wide range of biomacromolecule therapies across the body, including the gastrointestinal tract, through recent developments in ingestible robotic devices. However, needles generally require training, sharps management and disposal, and pose challenges for autonomous ingestible systems. Here, inspired by the jetting systems of cephalopods, we have developed and evaluated microjet delivery systems that can deliver jets in axial and radial directions into tissue, making them suitable for tubular and globular segments of the gastrointestinal tract.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!