We describe a method to label specific membrane proteins with fluorophores for live imaging. Fusion proteins are generated that incorporate into their extracellular domains short peptide sequences (13-38 amino acids) recognized with high affinity and specificity by protein ligands, alpha-bungarotoxin (BTX), or streptavidin (SA). Many fluorophore- and enzyme-conjugated derivatives of both ligands are commercially available. To demonstrate the general utility of the methods, we tagged a vesicle-associated protein (VAMP2), a receptor tyrosine kinase [muscle-specific kinase (MuSK)], and receptors for three neurotransmitters: acetylcholine (nAChR alpha3), glutamate (mGluR2), and gamma-aminobutyric acid (GABA(A) alpha3). In all cases, we could selectively label surface-exposed proteins without interference from intracellular pools. By successive pulse-labeling with different fluorophore conjugates of a single ligand, we were able to monitor endocytosis of tagged molecules. By combining the two ligands, we could assess co-localization of synaptic components in cells. This strategy for epitope tagging provides a useful adjunct to green fluorescent protein (GFP)-tagging, which fails to distinguish intracellular from extracellular pools, sometimes interferes with protein localization or function, and requires a separate construct for each color.

Download full-text PDF

Source
http://dx.doi.org/10.2144/05386IT02DOI Listing

Publication Analysis

Top Keywords

membrane proteins
8
peptide tags
4
tags labeling
4
labeling membrane
4
proteins
4
proteins live
4
live cells
4
cells multiple
4
multiple fluorophores
4
fluorophores describe
4

Similar Publications

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.

Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!