The membrane-bound enzyme cytochrome c oxidase is responsible for cell respiration in aerobic organisms and conserves free energy from O2 reduction into an electrochemical proton gradient by coupling the redox reaction to proton-pumping across the membrane. O2 reduction produces water at the bimetallic heme a3/CuB active site next to a hydrophobic cavity deep within the membrane. Water molecules in this cavity have been suggested to play an important role in the proton-pumping mechanism. Here, we show by molecular dynamics simulations that the conserved arginine/heme a3 delta-propionate ion pair provides a gate, which exhibits reversible thermal opening that is governed by the redox state and the water molecules in the cavity. An important role of this gate in the proton-pumping mechanism is supported by site-directed mutagenesis experiments. Transport of the product water out of the enzyme must be rigidly controlled to prevent water-mediated proton leaks that could compromise the proton-pumping function. Exit of product water is observed through the same arginine/propionate gate, which provides an explanation for the observed extraordinary spatial specificity of water expulsion from the enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180778 | PMC |
http://dx.doi.org/10.1073/pnas.0502873102 | DOI Listing |
J Int Soc Sports Nutr
December 2025
University of Bologna-Alma Mater Studiorum, Department of Quality of Life Sciences, Bologna, Italy.
Background: Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article "Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI).
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!