The Alzheimer's disease-linked genes, PS1 and PS2, are required for intramembrane proteolysis of multiple type I proteins, including Notch and amyloid precursor protein. In addition, it has been documented that PS1 positively regulates, whereas PS1 familial Alzheimer disease mutations suppress, phosphatidylinositol 3-kinase (PI3K)/Akt activation, a pathway known to inactivate glycogen synthase kinase-3 and reduce tau phosphorylation. In this study, we show that the loss of presenilins not only inhibits PI3K/Akt signaling and increases tau phosphorylation but also suppresses the MEK/ERK pathway. The deficits in Akt and ERK activation in cells deficient in both PS1 and PS2 (PS-/-) are evident after serum withdrawal and stimulation with fetal bovine serum or ligands of select receptor tyrosine kinases, platelet-derived growth factor receptor beta (PDGFR beta) and PDGFR alpha, but not insulin-like growth factor-1R and epidermal growth factor receptor. The defects in PDGF signaling in PS-/- cells are due to reduced expression of PDGF receptors. Whereas fetal bovine serum-induced Akt activation is reconstituted by both PS1 and PS2 in PS-/- cells, PDGF signaling is selectively restored by PS2 but not PS1 and is dependent on the N-terminal fragment of PS2 but not gamma-secretase activity or the hydrophilic loop of PS2. The rescue of PDGF receptor expression and activation by PS2 is facilitated by FHL2, a PS2-interacting transcriptional co-activator. Finally, we present evidence that PS1 mutations interfere with this PS2-mediated activity by reducing PS2 fragments. These findings highlight important roles of both presenilins in Akt and ERK signaling via select signaling receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500833200DOI Listing

Publication Analysis

Top Keywords

growth factor
12
ps1 ps2
12
ps2
9
erk activation
8
select signaling
8
signaling receptors
8
platelet-derived growth
8
tau phosphorylation
8
akt erk
8
ps2 ps-/-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!