Background: We have recently reported that pretreatment of rats with endotoxin (lipopolysaccharide, LPS) and selective agonists of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) protect the kidney against ischemia/reperfusion (I/R) injury. Here we investigate the hypothesis that the renoprotective effects of LPS may be due to an enhanced formation of endogenous ligands of PPARgamma, rather than an up-regulation of PPARgamma expression.
Methods: Rats were pretreated with LPS (1 mg/kg, IP, 24 hours prior to ischemia) in the absence (control) or presence of the selective PPARgamma antagonist GW9662 (1 mg/kg, IP, 24 and 12 hours prior to ischemia). Twenty-four hours after injection of LPS, rats were subjected to 60 minutes of bilateral renal ischemia, followed by 6 hours of reperfusion. Serum and urinary indicators of renal injury and dysfunction were measured, specifically serum creatinine, aspartate aminotransferase, and gamma-glutamyl-transferase, creatinine clearance, urine flow, and fractional excretion of sodium. Kidney PPARgamma1 mRNA levels were determined by reverse transcriptase-polymerase chain reaction.
Results: Pretreatment with LPS significantly attenuated all markers of renal injury and dysfunction caused by I/R. Most notably, GW9662 abolished the protective effects of LPS. Additionally, I/R caused an up-regulation of kidney PPARgamma1 mRNA levels compared to sham animals, which were unchanged in rats pretreated with LPS.
Conclusion: We document here for the first time that endogenous ligands of PPARgamma may contribute to the protection against renal I/R injury afforded by LPS pretreatment in the rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1523-1755.2005.00430.x | DOI Listing |
PLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet.
View Article and Find Full Text PDFLife (Basel)
December 2024
Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.
View Article and Find Full Text PDFLife Sci
January 2025
Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France. Electronic address:
Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.
View Article and Find Full Text PDFEur J Pharmacol
February 2025
College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea. Electronic address:
Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!