Traditionally, short scan helical FDK algorithms have been implemented based on horizontal transaxial slices. However, not every point on the horizontal transaxial slice satisfies Tuy's condition for the corresponding (pi+fan angle) segment of helix, which means that some points on the horizontal slices are incompletely sampled and are impossible to be exactly reconstructed. In this paper, we propose and implement an improved but still approximate short scan helical cone beam FDK algorithm based on nutating curved surfaces satisfying the Tuy's condition. This surface is defined by averaging PI surfaces emanating the initial and final source points of a (pi+fan angle) segment of helix. One of the key characteristics of the surface is that every point on it satisfies the Tuy's condition for the corresponding (pi+fan angle) segment of helix, which means that we can potentially reconstruct every point on the surface exactly. This difference makes the proposed algorithm deliver a better-reconstructed image quality while requiring a smaller detector area than that of traditional FDK methods based on horizontal transaxial slices. Another characteristic of the proposed surface is that every point within the helix belongs to one and only one such surface. Therefore, the location of the short scan segment for the reconstruction of a point in Cartesian coordinate could be precalculated and stored in a look-up table. This enables us to perform reconstruction directly on rectangular grids. We compare the performance of the improved FDK algorithm with that of a quasi-exact algorithm based on data combination technique. The simulation results show that the reconstructed image quality of these two methods is similar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.1916077 | DOI Listing |
Sensors (Basel)
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA 93405, USA.
Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, 7 Michal St., Haifa 3436212, Israel.
Background: A ground glass nodule (GGN) is a radiologically descriptive term for a lung parenchymal area with increased attenuation and preserved bronchial and vascular structures. GGNs are further divided into pure versus subsolid lesions. The differential diagnosis for GGNs is wide and contains a malignant possibility for a lung adenocarcinoma precursor or tumor.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
The processing properties of resistant starch (RS) and its digestion remain unclear, despite the widespread use of autoclaving combined with debranching in its preparation. In this study, the physicochemical, rheological and digestibility properties of autoclaving modified starch (ACB), autoclaving-pullulanase modified starch (ACPB) and native black Tartary buckwheat starch (NB) were compared and investigated. The molecular weight and polydispersity index of modified starch was in the range of 0.
View Article and Find Full Text PDFNeuroimage Clin
January 2025
Stroke Unit, ASST Spedali Civili, «Spedali Civili» Hospital, Brescia, Italy.
The present study investigated spatial dynamic functional network connectivity (dFNC) in patients with functional hemiparesis (i.e., functional stroke mimics, FSM).
View Article and Find Full Text PDFBiochemistry
January 2025
Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!